[Schneider]

### Creative Telescoping for Hypergeometric Double Sums

#### P. Paule, C. Schneider

Technical report no. 24-01 in RISC Report Series, Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria. ISSN 2791-4267 (online). January 2024. arXiv:2401.16314 [cs.SC]. Licensed under CC BY 4.0 International. [doi] [pdf]@

author = {P. Paule and C. Schneider},

title = {{Creative Telescoping for Hypergeometric Double Sums}},

language = {english},

abstract = {We present efficient methods for calculating linear recurrences of hypergeometric double sums and, more generally, of multiple sums. In particular, we supplement this approach with the algorithmic theory of contiguous relations, which guarantees the applicability of our method for many input sums. In addition, we elaborate new techniques to optimize the underlying key task of our method to compute rational solutions of parameterized linear recurrences.},

number = {24-01},

year = {2024},

month = {January},

note = {arXiv:2401.16314 [cs.SC]},

keywords = {creative telescoping; symbolic summation, hypergeometric multi-sums, contiguous relations, parameterized recurrences, rational solutions},

length = {26},

license = {CC BY 4.0 International},

type = {RISC Report Series},

institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},

address = {Altenberger Straße 69, 4040 Linz, Austria},

issn = {2791-4267 (online)}

}

**techreport**{RISC6894,author = {P. Paule and C. Schneider},

title = {{Creative Telescoping for Hypergeometric Double Sums}},

language = {english},

abstract = {We present efficient methods for calculating linear recurrences of hypergeometric double sums and, more generally, of multiple sums. In particular, we supplement this approach with the algorithmic theory of contiguous relations, which guarantees the applicability of our method for many input sums. In addition, we elaborate new techniques to optimize the underlying key task of our method to compute rational solutions of parameterized linear recurrences.},

number = {24-01},

year = {2024},

month = {January},

note = {arXiv:2401.16314 [cs.SC]},

keywords = {creative telescoping; symbolic summation, hypergeometric multi-sums, contiguous relations, parameterized recurrences, rational solutions},

length = {26},

license = {CC BY 4.0 International},

type = {RISC Report Series},

institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},

address = {Altenberger Straße 69, 4040 Linz, Austria},

issn = {2791-4267 (online)}

}