Computer Algebra for Combinatorics

Computer algebra for enumerative combinatorics and related fields like symbolic integration and summation, number theory (partitions, q-series, etc.), and special functions, incl. particle physics.

Computer Algebra for Combinatorics at RISC is devoted to research that combines computer algebra with enumerative combinatorics and related fields like symbolic integration and summation, number theory (partitions, q-series, etc.), and special functions, including particle physics. For further details see the research groups

Software

Bibasic Telescope

A Mathematica Implementation of a Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation

This package is part of the RISCErgoSum bundle. pqTelescope is a Mathematica implementation of a generalization of Gosper’s algorithm to indefinite bibasic hypergeometric summation. The package has been developed by Axel Riese, a former member of the RISC Combinatorics group. ...

Authors: Axel Riese
MoreSoftware Website

DiffTools

A Mathematica Implementation of several Algorithms for Solving Linear Difference Equations with Polynomial Coefficients

DiffTools is a Mathematica implementation for solving linear difference equations with polynomial coefficients. It contains an algorithm for finding polynomial solutions (by Marko Petkovsek), the algorithm by Sergei Abramov for finding rational solutions, the algorithm of Mark van Hoeij for ...

MoreSoftware Website

DrawFunDoms.m is a Mathematica package for drawing fundamental domains for congruence subgroups in the modular group SL2(ℤ). It was written by Paul Kainberger as part of his master’s thesis under supervision of Univ.-Prof. Dr. Peter Paule at the ...

Authors:
MoreSoftware Website

Engel

A Mathematica Implementation of q-Engel Expansion

This package is part of the RISCErgoSum bundle. Engel is a Mathematica implementation of the q -Engel Expansion algorithm which expands q-series into inverse polynomial series. Examples of q-Engel Expansions include the Rogers-Ramanujan identities together with their elegant generalization by ...

MoreSoftware Website

GenOmega

A Mathematica Implementation of Guo-Niu Han's General Algorithm for MacMahon's Partition Analysis

This package is part of the RISCErgoSum bundle. GenOmega is a Mathematica implementation of Guo-Niu Han’s general Algorithm for MacMahon’s Partition Analysis carried out by Manuela Wiesinger, a master student of the RISC Combinatorics group. Partition Analysis is a computational ...

MoreSoftware Website

Guess

A Mathematica Package for Guessing Multivariate Recurrence Equations

This package is part of the RISCErgoSum bundle. The Guess package provides commands for guessing multivariate recurrence equations, as well as for efficiently guessing minimal order univariate recurrence, differential, or algebraic equations given the initial terms of a sequence or ...

Authors: Manuel Kauers
MoreSoftware Website

HarmonicSums

The HarmonicSums package by Jakob Ablinger allows to deal with nested sums such as harmonic sums, S-sums, cyclotomic sums and cyclotmic S-sums as well as iterated integrals such as harmonic polylogarithms, multiple polylogarithms and cyclotomic polylogarithms in an algorithmic fashion. ...

More

HolonomicFunctions

A Mathematica Package for dealing with Multivariate Holonomic Functions, including Closure Properties, Summation, and Integration

This package is part of the RISCErgoSum bundle. The HolonomicFunctions package allows to deal with multivariate holonomic functions and sequences in an algorithmic fashion. For this purpose the package can compute annihilating ideals and execute closure properties (addition, multiplication, substitutions) ...

MoreSoftware Website

ModularGroup

ModularGroup.m is a Mathematica package which has been developed in the course of the diploma thesis Computer Algebra and Analysis: Complex Variables Visualized, carried out at the Research Institute for Symbolic Computation (RISC) of the Johannes Kepler University Linz ...

MoreSoftware Website

MultiIntegrate

The MultiIntegrate package allows to compute multi-dimensional integrals over hyperexponential integrands in terms of (generalized) harmonic sums.

The MultiIntegrate package allows to compute multi-dimensional integrals over hyperexponential integrands in terms of (generalized) harmonic sums. This package uses variations and extensions of the multivariate Alkmkvist-Zeilberger algorithm. Registration and Legal Notices The source code for this package is password ...

More

MultiSum

A Mathematica Package for Proving Hypergeometric Multi-Sum Identities

This package is part of the RISCErgoSum bundle. MultiSum is a Mathematica package for proving hypergeometric multi-sum identities. It uses an efficient generalization of Sister Celine’s technique to find a homogeneous polynomial recurrence relation for the sum. The package has ...

MoreSoftware Website

Omega

A Mathematica Implementation of Partition Analysis

Omega is a Mathematica implementation of MacMahon’s Partition Analysis carried out by Axel Riese, a Postdoc of the RISC Combinatorics group. It has been developed together with George E. Andrews and Peter Paule within the frame of a project initiated ...

Authors: Axel Riese
MoreSoftware Website

OreSys

A Mathematica Implementation of several Algorithms for Uncoupling Systems of Linear Ore Operator Equations

This package is part of the RISCErgoSum bundle. OreSys is a Mathematica package for uncoupling systems of linear Ore operator equations. It offers four algorithms for reducing systems of differential or (q-)difference equations to higher order equations in a single ...

MoreSoftware Website

PLDESolver

The PLDESolver package is a Mathematica package to find solutions of parameterized linear difference equations in difference rings.

The PLDESolver package by Jakob Ablinger and Carsten Schneider is a Mathematica package that allows to compute solutions of non-degenerated linear difference operators in difference rings with zero-divisors by reducing it to finding solutions in difference rings that are integral ...

More

QEta

A FriCAS package to compute with Dedekind eta functions

The QEta package is a collection of programs written in the FriCAS computer algebra system that allow to compute with Dedekind eta-functions and related q-series where q=exp(2 π i τ). Furthermore, we provide a number of functions connected to the ...

Authors: Ralf Hemmecke
MoreSoftware Website

qFunctions

The qFunctions package is a Mathematica package for q-series and partition theory applications.

The qFunctions package by Jakob Ablinger and Ali K. Uncu is a Mathematica package for q-series and partition theory applications. This package includes both experimental and symbolic tools. The experimental set of elements includes guessers for q-shift equations and recurrences ...

More

qMultiSum

A Mathematica Package for Proving q-Hypergeometric Multi-Sum Identities

This package is part of the RISCErgoSum bundle. qMultiSum is a Mathematica package for proving q-hypergeometric multiple summation identities. The package has been developed by Axel Riese, a former member of the RISC Combinatorics group. ...

Authors: Axel Riese
MoreSoftware Website

qZeil

A Mathematica Implementation of q-Analogues of Gosper's and Zeilberger's Algorithm

This package is part of the RISCErgoSum bundle. qZeil is a Mathematica implementation of q-analogues of Gosper’s and Zeilberger’s algorithm for proving and finding indefinite and definite q-hypergeometric summation identities. The package has been developed by Axel Riese, a former ...

Authors: Axel Riese
MoreSoftware Website

RaduRK

RaduRK: Ramanujan-Kolberg Program

RaduRK is a Mathematica implementation of an algorithm developed by Cristian-Silviu Radu. The algorithm takes as input an arithmetic sequence a(n) generated from a large class of q-Pochhammer quotients, together with a given arithmetic progression mn+j, and the level of ...

Authors: Nicolas Smoot
More

RatDiff

A Mathematica Implementation of Mark van Hoeij's Algorithm for Finding Rational Solutions of Linear Difference Equations

RatDiff is a Mathematica implementation of Mark van Hoeij's algorithm for finding rational solutions of linear difference equations. The package has been developed by Axel Riese, a Postdoc of the RISC Combinatorics group during a stay at the University of ...

Authors: Axel Riese
MoreSoftware Website

RLangGFun

A Maple Implementation of the Inverse Schützenberger Methodology

The inverse Schützenberger methodology transforms a rational generating function into a (pseudo-) regular expression for a corresponding regular language, and is based on Soittola's Theorem about the N-rationality of a formal power series. It is implemented in the Maple package ...

MoreSoftware Website

Sigma

A Mathematica Package for Discovering and Proving Multi-Sum Identities

Sigma is a Mathematica package that can handle multi-sums in terms of indefinite nested sums and products. The summation principles of Sigma are: telescoping, creative telescoping and recurrence solving. The underlying machinery of Sigma is based on difference field theory. ...

MoreSoftware Website

Stirling

A Mathematica Package for Computing Recurrence Equations of Sums Involving Stirling Numbers or Eulerian Numbers

This package is part of the RISCErgoSum bundle. The Stirling package provides a command for computing recurrence equations of sums involving Stirling numbers or Eulerian numbers. ...

Authors: Manuel Kauers
MoreSoftware Website

SumCracker

A Mathematica Implementation of several Algorithms for Identities and Inequalities of Special Sequences, including Summation Problems

This package is part of the RISCErgoSum bundle. The SumCracker package contains routines for manipulating a large class of sequences (admissible sequences). It can prove identities and inequalities for these sequences, simplify expressions, evaluate symbolic sums, and solve certain difference ...

Authors: Manuel Kauers
MoreSoftware Website

Zeilberger

A Maxima Implementation of Gosper's and Zeilberger's Algorithm

Zeilberger is an implementatian for the free and open source Maxima computer algebra system of Gosper's and Zeilberger's algorithm for proving and finding indefinite and definite hypergeometric summation identities. The package has been developed by Fabrizio Caruso, a former Ph. ...

MoreSoftware Website

Publications

2021

[Ablinger]

Extensions of the AZ-algorithm and the Package MultiIntegrate

J. Ablinger

Technical report no. 21-02 in RISC Report Series, Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria. ISSN 2791-4267 (online). January 2021. [doi] [pdf]
[bib]
@techreport{RISC6272,
author = {J. Ablinger},
title = {{Extensions of the AZ-algorithm and the Package MultiIntegrate}},
language = {english},
abstract = {We extend the (continuous) multivariate Almkvist-Zeilberger algorithm inorder to apply it for instance to special Feynman integrals emerging in renormalizable Quantum field Theories. We will consider multidimensional integrals overhyperexponential integrals and try to find closed form representations in terms ofnested sums and products or iterated integrals. In addition, if we fail to computea closed form solution in full generality, we may succeed in computing the firstcoeffcients of the Laurent series expansions of such integrals in terms of indefnitenested sums and products or iterated integrals. In this article we present the corresponding methods and algorithms. Our Mathematica package MultiIntegrate,can be considered as an enhanced implementation of the (continuous) multivariateAlmkvist Zeilberger algorithm to compute recurrences or differential equations forhyperexponential integrands and integrals. Together with the summation packageSigma and the package HarmonicSums our package provides methods to computeclosed form representations (or coeffcients of the Laurent series expansions) of multidimensional integrals over hyperexponential integrands in terms of nested sums oriterated integrals.},
number = {21-02},
year = {2021},
month = {January},
keywords = {multivariate Almkvist-Zeilberger algorithm, hyperexponential integrals, iterated integrals, nested sums},
length = {25},
type = {RISC Report Series},
institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},
address = {Altenberger Straße 69, 4040 Linz, Austria},
issn = {2791-4267 (online)}
}
[Hemmecke]

Construction of Modular Function Bases for $Gamma_0(121)$ related to $p(11n+6)$

Ralf Hemmecke, Peter Paule, Silviu Radu

Integral Transforms and Special Functions 32(5-8), pp. 512-527. 2021. Taylor & Francis, 1065-2469. [doi]
[bib]
@article{RISC6342,
author = {Ralf Hemmecke and Peter Paule and Silviu Radu},
title = {{Construction of Modular Function Bases for $Gamma_0(121)$ related to $p(11n+6)$}},
language = {english},
abstract = {Motivated by arithmetic properties of partitionnumbers $p(n)$, our goal is to find algorithmicallya Ramanujan type identity of the form$sum_{n=0}^{infty}p(11n+6)q^n=R$, where $R$ is apolynomial in products of the form$e_alpha:=prod_{n=1}^{infty}(1-q^{11^alpha n})$with $alpha=0,1,2$. To this end we multiply theleft side by an appropriate factor such the resultis a modular function for $Gamma_0(121)$ havingonly poles at infinity. It turns out thatpolynomials in the $e_alpha$ do not generate thefull space of such functions, so we were led tomodify our goal. More concretely, we give threedifferent ways to construct the space of modularfunctions for $Gamma_0(121)$ having only poles atinfinity. This in turn leads to three differentrepresentations of $R$ not solely in terms of the$e_alpha$ but, for example, by using as generatorsalso other functions like the modular invariant $j$.},
journal = {Integral Transforms and Special Functions},
volume = {32},
number = {5-8},
pages = {512--527},
publisher = {Taylor & Francis},
isbn_issn = {1065-2469},
year = {2021},
refereed = {yes},
keywords = {Ramanujan identities, bases for modular functions, integral bases},
sponsor = {FWF (SFB F50-06)},
length = {16},
url = {https://doi.org/10.1080/10652469.2020.1806261}
}
[Jimenez Pastor]

On C2-Finite Sequences

Antonio Jiménez-Pastor, Philipp Nuspl, Veronika Pillwein

In: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, Frédéric Chyzak, George Labahn (ed.), ISSAC '21 , pp. 217-224. 2021. Association for Computing Machinery, New York, NY, USA, ISBN 9781450383820. [doi]
[bib]
@inproceedings{RISC6348,
author = {Antonio Jiménez-Pastor and Philipp Nuspl and Veronika Pillwein},
title = {{On C2-Finite Sequences}},
booktitle = {{Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation}},
language = {english},
abstract = {Holonomic sequences are widely studied as many objects interesting to mathematiciansand computer scientists are in this class. In the univariate case, these are the sequencessatisfying linear recurrences with polynomial coefficients and also referred to asD-finite sequences. A subclass are C-finite sequences satisfying a linear recurrencewith constant coefficients.We investigate the set of sequences which satisfy linearrecurrence equations with coefficients that are C-finite sequences. These sequencesare a natural generalization of holonomic sequences. In this paper, we show that C2-finitesequences form a difference ring and provide methods to compute in this ring.},
series = {ISSAC '21},
pages = {217--224},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
isbn_issn = {ISBN 9781450383820},
year = {2021},
editor = {Frédéric Chyzak and George Labahn},
refereed = {yes},
keywords = {holonomic sequences, algorithms, closure properties, difference equations},
length = {8},
url = {https://doi.org/10.1145/3452143.3465529}
}
[Paule]

An Invitation to Analytic Combinatorics

Peter Paule (ed.), Stephen Melczer

Texts and Monographs in Symbolic Computation 1st edition, 2021. Springer, 978-3-030-67080-1.
[bib]
@book{RISC6277,
author = {Peter Paule (ed.) and Stephen Melczer},
title = {{An Invitation to Analytic Combinatorics}},
language = {english},
series = {Texts and Monographs in Symbolic Computation},
publisher = {Springer},
isbn_issn = {978-3-030-67080-1},
year = {2021},
edition = {1st},
translation = {0},
length = {405}
}
[Paule]

Contiguous Relations and Creative Telescoping

Peter Paule

In: Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Bluemlein and C. Schneider (ed.), Texts and Monographs in Symbolic Computation , pp. -. 2021. Springer, ISBN 978-3-030-80218-9. To appear. [pdf]
[bib]
@incollection{RISC6366,
author = {Peter Paule},
title = {{Contiguous Relations and Creative Telescoping}},
booktitle = {{Anti-Differentiation and the Calculation of Feynman Amplitudes}},
language = {english},
abstract = {This article presents an algorithmic theory of contiguous relations.Contiguous relations, first studied by Gauß, are a fundamental concept within the theory of hypergeometric series. In contrast to Takayama’s approach, which for elimination uses non-commutative Gröbner bases, our framework is based on parameterized telescoping and can be viewed as an extension of Zeilberger’s creative telescoping paradigm based on Gosper’s algorithm. The wide range of applications include elementary algorithmic explanations of the existence of classical formulas for non- terminating hypergeometric series such as Gauß, Pfaff-Saalschütz, or Dixon summation. The method can be used to derive new theorems, like a non-terminating extension of a classical recurrence established by Wilson between terminating 4F3-series. Moreover, our setting helps to explain the non-minimal order phenomenon of Zeilberger’s algorithm.},
series = {Texts and Monographs in Symbolic Computation},
pages = {--},
publisher = {Springer},
isbn_issn = {ISBN 978-3-030-80218-9},
year = {2021},
note = {To appear},
editor = {J. Bluemlein and C. Schneider},
refereed = {yes},
length = {61}
}
[Schneider]

The Absent-Minded Passengers Problem: A Motivating Challenge Solved by Computer Algebra

C. Schneider

Mathematics in Computer Science , appeared electronically, pp. ?-?. 2021. ISSN 1661-8289. arXiv:2003.01921 [math.CO]. [doi]
[bib]
@article{RISC6127,
author = {C. Schneider},
title = {{The Absent-Minded Passengers Problem: A Motivating Challenge Solved by Computer Algebra}},
language = {english},
journal = {Mathematics in Computer Science , appeared electronically},
pages = {?--?},
isbn_issn = {ISSN 1661-8289},
year = {2021},
note = {arXiv:2003.01921 [math.CO]},
refereed = {yes},
length = {12},
url = {https://doi.org/10.1007/s11786-020-00494-w}
}
[Schneider]

Three loop heavy quark form factors and their asymptotic behavior

J. Ablinger, J. Blümlein, P. Marquard, N. Rana, C. Schneider

In: Proc.of 23rd DAE-BRNS High Energy Physics Symposium 2018, Behera, P.K., Bhatnagar, V., Shukla, P., Sinha, R. (ed.), Springer Proceedings in Physics 261, pp. 91-100. 2021. Springer, ISBN 978-981-33-4407-5. arXiv:1906.05829 [hep-ph], https://doi.org/10.1007/978-981-33-4408-2_14. [url]
[bib]
@inproceedings{RISC6024,
author = {J. Ablinger and J. Blümlein and P. Marquard and N. Rana and C. Schneider},
title = {{Three loop heavy quark form factors and their asymptotic behavior}},
booktitle = {{Proc.of 23rd DAE-BRNS High Energy Physics Symposium 2018}},
language = {english},
series = {Springer Proceedings in Physics},
volume = {261},
pages = {91--100},
publisher = {Springer},
isbn_issn = {ISBN 978-981-33-4407-5},
year = {2021},
note = {arXiv:1906.05829 [hep-ph], https://doi.org/10.1007/978-981-33-4408-2_14},
editor = {Behera and P.K. and Bhatnagar and V. and Shukla and P. and Sinha and R.},
refereed = {yes},
length = {10},
url = {https://arxiv.org/abs/1906.05829}
}
[Schneider]

Solving linear difference equations with coefficients in rings with idempotent representations

J. Ablinger, C. Schneider

In: Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Proc. ISSAC 21), Marc Mezzarobba (ed.), pp. 27-34. 2021. ISBN 978-1-4503-8382-0/21/06. arXiv:2102.03307 [cs.SC]. [doi]
[bib]
@inproceedings{RISC6302,
author = {J. Ablinger and C. Schneider},
title = {{Solving linear difference equations with coefficients in rings with idempotent representations}},
booktitle = {{Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Proc. ISSAC 21)}},
language = {english},
pages = {27--34},
isbn_issn = {ISBN 978-1-4503-8382-0/21/06},
year = {2021},
note = {arXiv:2102.03307 [cs.SC]},
editor = {Marc Mezzarobba},
refereed = {yes},
length = {8},
url = {https://doi.org/10.1145/3452143.3465535}
}
[Schneider]

A case study for ζ(4)

Carsten Schneider, Wadim Zudilin

In: Transcendence in Algebra, Combinatorics, Geometry and Number Theory, TRANS19 – Transient Transcendence in Transylvania, Brașov, Romania, May 13–17, 2019, Revised and Extended Contributions, Alin Bostan and Kilian Raschel (ed.), Proceedings in Mathematics & Statistics 373, pp. ?-?. 2021. Springer, ISBN 978-3-030-84304-5. arXiv:2004.08158 [math.NT]. [url]
[bib]
@incollection{RISC6210,
author = {Carsten Schneider and Wadim Zudilin},
title = {{A case study for ζ(4)}},
booktitle = {{Transcendence in Algebra, Combinatorics, Geometry and Number Theory, TRANS19 – Transient Transcendence in Transylvania, Brașov, Romania, May 13–17, 2019, Revised and Extended Contributions}},
language = {english},
series = {Proceedings in Mathematics & Statistics},
volume = {373},
pages = {?--?},
publisher = {Springer},
isbn_issn = {ISBN 978-3-030-84304-5},
year = {2021},
note = {arXiv:2004.08158 [math.NT]},
editor = {Alin Bostan and Kilian Raschel},
refereed = {yes},
length = {0},
url = {https://arxiv.org/abs/2004.08158}
}
[Schneider]

On Rational and Hypergeometric Solutions of Linear Ordinary Difference Equations in ΠΣ∗-field extensions

Sergei A. Abramov, Manuel Bronstein, Marko Petkovšek, Carsten Schneider

J. Symb. Comput. 107, pp. 23-66. 2021. ISSN 0747-7171. arXiv:2005.04944 [cs.SC]. [doi]
[bib]
@article{RISC6224,
author = {Sergei A. Abramov and Manuel Bronstein and Marko Petkovšek and Carsten Schneider},
title = {{On Rational and Hypergeometric Solutions of Linear Ordinary Difference Equations in ΠΣ∗-field extensions}},
language = {english},
journal = {J. Symb. Comput.},
volume = {107},
pages = {23--66},
isbn_issn = {ISSN 0747-7171},
year = {2021},
note = {arXiv:2005.04944 [cs.SC]},
refereed = {yes},
length = {44},
url = {https://doi.org/10.1016/j.jsc.2021.01.002}
}
[Schneider]

The Polarized Transition Matrix Element $A_{g, q}(N)$ of the Variable Flavor Number Scheme at $O(alpha_s^3)$

A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, K. Schönwald, and C. Schneider

Nuclear Physics B 964, pp. 115331-115356. 2021. ISSN 0550-3213. arXiv:2101.05733 [hep-ph]. [doi]
[bib]
@article{RISC6278,
author = {A. Behring and J. Blümlein and A. De Freitas and A. von Manteuffel and K. Schönwald and and C. Schneider},
title = {{The Polarized Transition Matrix Element $A_{g,q}(N)$ of the Variable Flavor Number Scheme at $O(alpha_s^3)$}},
language = {english},
journal = {Nuclear Physics B},
volume = {964},
pages = {115331--115356},
isbn_issn = {ISSN 0550-3213},
year = {2021},
note = {arXiv:2101.05733 [hep-ph]},
refereed = {yes},
length = {26},
url = {https://doi.org/10.1016/j.nuclphysb.2021.115331}
}
[Schneider]

Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation

C. Schneider

In: Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Blümlein and C. Schneider (ed.), Texts and Monographs in Symbolic Computuation to appear, pp. ?-?. 2021. Springer, arXiv:2102.01471 [cs.SC], RISC-Linz Report Series No. 21-03. [url]
[bib]
@incollection{RISC6287,
author = {C. Schneider},
title = {{Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation}},
booktitle = {{Anti-Differentiation and the Calculation of Feynman Amplitudes}},
language = {english},
series = {Texts and Monographs in Symbolic Computuation},
volume = {to appear},
pages = {?--?},
publisher = {Springer},
isbn_issn = {?},
year = {2021},
note = {arXiv:2102.01471 [cs.SC], RISC-Linz Report Series No. 21-03},
editor = {J. Blümlein and C. Schneider},
refereed = {yes},
length = {55},
url = {https://arxiv.org/abs/2102.01471}
}
[Schneider]

Iterated integrals over letters induced by quadratic forms

J. Ablinger, J. Blümlein, C. Schneider

Physical Review D 103(9), pp. 096025-096035. 2021. ISSN 2470-0029. arXiv:2103.08330 [hep-th]. [doi]
[bib]
@article{RISC6294,
author = {J. Ablinger and J. Blümlein and C. Schneider},
title = {{Iterated integrals over letters induced by quadratic forms}},
language = {english},
journal = {Physical Review D },
volume = {103},
number = {9},
pages = {096025--096035},
isbn_issn = {ISSN 2470-0029},
year = {2021},
note = {arXiv:2103.08330 [hep-th]},
refereed = {yes},
length = {11},
url = {https://www.doi.org/10.1103/PhysRevD.103.096025}
}
[Schneider]

New 2– and 3–loop heavy flavor corrections to unpolarized and polarized deep-inelastic scattering

J. Ablinger, J. Blümlein, A. De Freitas, M. Saragnese, C. Schneider, K. Schönwald

Technical report no. 21-14 in RISC Report Series, Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria. ISSN 2791-4267 (online). July 2021. Licensed under CC BY 4.0 International. [doi] [pdf]
[bib]
@techreport{RISC6350,
author = {J. Ablinger and J. Blümlein and A. De Freitas and M. Saragnese and C. Schneider and K. Schönwald},
title = {{New 2– and 3–loop heavy flavor corrections to unpolarized and polarized deep-inelastic scattering}},
language = {english},
abstract = {A survey is given on the new 2-- and 3--loop results for the heavy flavor contributions to deep--inelastic scattering in the unpolarized and the polarized case. We also discuss related new mathematical aspectsapplied in these calculations.},
number = {21-14},
year = {2021},
month = {July},
keywords = {deep inelastic scattering, 3-loop Feynman integrals, symbolic summation, large moment method, special functions},
length = {13},
license = {CC BY 4.0 International},
type = {RISC Report Series},
institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},
address = {Altenberger Straße 69, 4040 Linz, Austria},
issn = {2791-4267 (online)}
}
[Schneider]

The Logarithmic Contributions to the Polarized $O(alpha_s^3)$ Asymptotic Massive Wilson Coefficients and Operator Matrix Elements in Deeply Inelastic Scattering

J. Blümlein, A. De Freitas, M. Saragnese, K. Schönwald, C. Schneider

Physical Review D 104(3), pp. 1-73. 2021. ISSN 2470-0029. arXiv:2105.09572 [hep-ph]. [doi]
[bib]
@article{RISC6333,
author = {J. Blümlein and A. De Freitas and M. Saragnese and K. Schönwald and C. Schneider},
title = {{The Logarithmic Contributions to the Polarized $O(alpha_s^3)$ Asymptotic Massive Wilson Coefficients and Operator Matrix Elements in Deeply Inelastic Scattering}},
language = {english},
abstract = {We compute the logarithmic contributions to the polarized massive Wilson coefficients fordeep-inelastic scattering in the asymptotic region $Q^2gg m^2$ to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the polarized massiveoperator matrix elements needed in the variable flavor number scheme. The calculationis performed in the Larin scheme. For the massive operator matrix elements $A_{qq,Q}^{(3),PS}$ and $A_{qg,Q}^{(3),S}$the complete results are presented. The expressions are given in Mellin-$N$ space andin momentum fraction $z$-space.},
journal = {Physical Review D},
volume = {104},
number = {3},
pages = {1--73},
isbn_issn = {ISSN 2470-0029},
year = {2021},
note = {arXiv:2105.09572 [hep-ph]},
refereed = {yes},
keywords = {logarithmic contributions to the polarized massive Wilson coefficients, symbolic summation, harmonic sums, harmonic polylogarithm},
length = {73},
url = {https://doi.org/10.1103/PhysRevD.104.034030 }
}
[Schneider]

The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements

J. Blümlein, P. Marquard, C. Schneider, K. Schönwald

Nucl. Phys. B 971, pp. 1-44. 2021. ISSN 0550-3213. arXiv:2107.06267 [hep-ph]. [doi]
[bib]
@article{RISC6362,
author = {J. Blümlein and P. Marquard and C. Schneider and K. Schönwald},
title = {{The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements}},
language = {english},
abstract = {We calculate the unpolarized and polarized three--loop anomalous dimensions and splitting functions $P_{rm NS}^+, P_{rm NS}^-$ and $P_{rm NS}^{rm s}$ in QCD in the $overline{sf MS}$ scheme by using the traditional method of space--like off shell massless operator matrix elements. This is a gauge--dependent framework. For the first time we also calculate the three--loop anomalous dimensions $P_{rm NS}^{rm pm, tr}$ for transversity directly. We compare our results to the literature. },
journal = {Nucl. Phys. B},
volume = {971},
pages = {1--44},
isbn_issn = {ISSN 0550-3213},
year = {2021},
note = {arXiv:2107.06267 [hep-ph]},
refereed = {yes},
length = {44},
url = {https://doi.org/10.1016/j.nuclphysb.2021.115542}
}
[Uncu]

qFunctions - A Mathematica package for q-series and partition theory applications

J. Ablinger, A. Uncu

Journal of Symbolic Computation 107, pp. 145-166. 2021. ISSN 0747-7171. arXiv:1910.12410. [doi]
[bib]
@article{RISC6299,
author = {J. Ablinger and A. Uncu},
title = {{qFunctions -- A Mathematica package for q-series and partition theory applications}},
language = {english},
journal = {Journal of Symbolic Computation},
volume = {107},
pages = {145--166},
isbn_issn = {ISSN 0747-7171},
year = {2021},
note = {arXiv:1910.12410},
refereed = {yes},
length = {22},
url = {https://doi.org/10.1016/j.jsc.2021.02.003}
}

2020

[Ablinger]

Proving Two Conjectural Series for $\zeta(7)$ and Discovering More Series for $\zeta(7)$

J. Ablinger

In: Mathematical Aspects of Computer and Information Science, D. Slamanig, E. Tsigaridas, Z. Zafeirakopoulos (ed.), pp. 42-47. 2020. Springer International Publishing, 978-3-030-43120-4. [url]
[bib]
@inproceedings{RISC6102,
author = {J. Ablinger},
title = {{Proving Two Conjectural Series for $\zeta(7)$ and Discovering More Series for $\zeta(7)$}},
booktitle = {{Mathematical Aspects of Computer and Information Science}},
language = {english},
pages = {42--47},
publisher = {Springer International Publishing},
isbn_issn = {978-3-030-43120-4},
year = {2020},
editor = {D. Slamanig and E. Tsigaridas and Z. Zafeirakopoulos},
refereed = {yes},
length = {6},
url = {https://arxiv.org/abs/1908.06631v1}
}
[Ablinger]

Subleading logarithmic QED initial state corrections to $e^+e^−\to γ^⁎/Z^{0⁎}$ to $O(\alpha^6L^5)$

J. Ablinger, J. Blümlein, A. De Freitas, K. Schönwald

Nuclear Physics B 955, pp. 115045-115045. 2020. ISSN 0550-3213. [url]
[bib]
@article{RISC6111,
author = {J. Ablinger and J. Blümlein and A. De Freitas and K. Schönwald},
title = {{Subleading logarithmic QED initial state corrections to $e^+e^−\to γ^⁎/Z^{0⁎}$ to $O(\alpha^6L^5)$}},
language = {english},
journal = {Nuclear Physics B},
volume = {955},
pages = {115045--115045},
isbn_issn = { ISSN 0550-3213},
year = {2020},
refereed = {yes},
length = {0},
url = {http://www.sciencedirect.com/science/article/pii/S0550321320301310}
}
[AUTHOR]

The Sage Package Comb_walks for Walks in the Quarter Plane

Antonio Jiménez-Pastor, Alin Bostan, Frédéric Chyzak, Pierre Lairez

ACM Commun. Comput. Algebra 54(2), pp. 30-38. sep 2020. Association for Computing Machinery, New York, NY, USA, 1932-2240. [doi]
[bib]
@article{RISC6282,
author = {Antonio Jiménez-Pastor and Alin Bostan and Frédéric Chyzak and Pierre Lairez},
title = {{The Sage Package Comb_walks for Walks in the Quarter Plane}},
language = {english},
abstract = {We present in this extended abstract a new software designed to work with generating functions that count walks in the quarter plane. With this software we offer a cohesive package that brings together all the required procedures for manipulating these generating functions, as well as a unified interface to deal with them. We also display results that this package offers on a public webpage.},
journal = {ACM Commun. Comput. Algebra},
volume = {54},
number = {2},
pages = {30--38},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
isbn_issn = {1932-2240},
year = {2020},
month = {sep},
refereed = {yes},
keywords = {Sage, D-algebraic functions, generating functions, elliptic functions, lattice walks},
length = {9},
url = {https://doi.org/10.1145/3427218.3427220}
}

Loading…