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1. Introduction

The concept of Groebner Bases was introduced by Buchberger an Austrian, in 1965 in the context of his work on performing algorithmic computations in residue classes of polynomial rings. Buchberger's algorithm for computing Groebner Bases is a powerful tool for solving many important problems in polynomial ideal theory. The algorithm was named after Wolfgang Groebner who was the Ph.D. Advisor to Buchberger and who stimulated the research on the subject. Groebner Bases orderings on monomials. [1]
Wolfgang Groebner proposed the problem by asking how a multiplicative table for the associative algebra, formed by the residue ring modulo a polynomial ideal can be constructed algorithmically and Buchberger showed that it sufficed to adjoin the differences of each critical pair (S-Polynomials) to get a certain basis that solves this problem in finite number of steps. [5]
The basic idea of Groebner Bases is that starting from a finite set say A, of polynomials that generate an Ideal, I, say then there is a method that is used to transform the set A into a certain standard form S, this is by following Buchberger’s algorithm.
A Closely related concept i.e. that of “standard bases” was discovered in 1964 by Hironaka. He did this independently, but he only gave an unconstructive existence proof. Whereas Buchberger gave a proof for their existence and proceeded to give an algorithmic way of constructing them.
In the thesis dissertation of Buchberger, we find that he succeeded in establishing the existence of Groebner basis and gave an algorithm for their computation with coefficients in the any field. Our aim is to see what happens in the case of finite fields mainly integers modulo a prime number p i.e. 
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 in relation to the Groebner basis over a rational number field 
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and also whether it is possible to make arithmetic in the computation of the Groebner basis with coefficients in the finite extensions of the rational number field. This project is more theoretical oriented in the sense that we do not aim at actually computing Groebner basis since that has already been done   see[5] but ours is to facilitate the process and  to establish some kind of theorem  using the theory of fields and especially field extensions  to do this.
After their introduction by Buchberger in 1965, there have been many studies carried out relating to this subject, some of them carried by Buchberger himself with some of his colleagues for instance he gives a better version of his algorithm in [6].
Some of the studies that have been carried out relating to this area are: For example in the work of D Kapur and Y Y Cai [7], where they give an algorithm for computing a Groebner Bases of an ideal of polynomials whose coefficients are taken from a ring with zero divisors, i.e. rings like 
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 and 
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, where n is not a prime number. The algorithm is patterned after Buchberger’s algorithm for computing a Groebner Bases of a polynomial ideal whose coefficients are from a field and its extension developed by Kandri-Rody and Kapur when the coefficients appearing in the polynomials are from a Euclidean domain. The algorithm works as Buchberger’s algorithm when a polynomial ideal is over a field and as Kandri-Rody and Kapur’s algorithm when a polynomial ideal is over a Euclidean domain. 
There have been many publications and texts on Groebner basis, bearing in mind that they were developed in 1965 and Buchberger gave many papers on their improvement and again many people have studied them and this we can get an idea by looking at the webpage of Buchberger where we find that has co-published many papers on the subject.
2. Problem statement

As we will see how to compute Groebner Basis, we will find that their computation over finite fields i.e. having their coefficients in fields is easier than in their computation over rational number fields and it gets more complicated as the field grows or as we extend the field for in instance when we have finite extensions of 
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 for instance 
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 is irrational. Then manipulation of polynomials over such a field would be agony even for the computer it would take a lot of memory space and thus the speed would be quite compromised. Thus we set out to investigate what could be done to solve these problems and thus to facilitate dealings with happens in the case of Groebner Basis computation over more general fields for example finite extensions 
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of the rational number field, 
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.

Now what drove us to such areas of study?
We had a school on Algebraic Geometry and Commutative Algebra in August 2004 some of the striking areas at least for me were the part II of the course which were covered by Jennifer Morse and Rikard  Bogvad i.e. Ideals, varieties and algorithms and the computer implementation by Mike Zabrocki. Under this we covered; 

· Division algorithm
· Monomial ideals and Dickson’s lemma
· Hilbert basis theorem and Groebner Basis
· Buchberger’s algorithm
· Ideal membership problem, implication problem and elimination theory
After having attended the conference, I consulted with my supervisor, who gave me a list of projects from [2]. I read the appendix and came across a possible project on improvement of Buchberger’s algorithm for the computation of Groebner basis.
3. Abbreviations and Symbols
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4. Concepts and Theorems used
The ideas we present here are applicable to any polynomial ring 
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where 
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 is a field, and 
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, i.e. I is an ideal of the ring 
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Finite extensions [8]
A field 
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 is said to be an extension field (or field extension, or extension), denoted 
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 is a subfield of 
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. For example, the complex numbers are an extension field of the real numbers, and the real numbers are an extension field of the rational numbers. 

The extension field degree (or relative degree, or index) of an extension field 
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Given a field 
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, there are a couple of ways to find an extension field. If F is contained in a larger field, 
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. For instance, the rational numbers can be extended by the complex number 
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. If there is only one new element, the extension is called a simple extension. The process of adding a new element is called 'adjoining.' 
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Now the ideal I can be generated by some finite number of elements 
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 is Noetherian, for example the polynomial ring that we
will consider it.
Definition Noetherian Ring [9]
A ring is called left (respectively, right) Noetherian if it does not contain an infinite ascending chain of left (respectively, right) ideals. In this case, the ring in question is said to satisfy the ascending chain condition on left (respectively, right) ideals. 

A ring is said to be Noetherian if it is both left and right Noetherian. If a ring R is Noetherian, then the following are equivalent. 

1. R satisfies the ascending chain condition on ideals. 

2. very ideal of R is finitely generated. 

3. Every set of ideals contains a maximal element.
If 
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Here we have an ideal whose generating set is 
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Example: 
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We shall use 
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 as our default symbol representing an Ideal.

Polynomial ring
Let 
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 be a ring. The polynomial ring over 
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 in one variable 
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Elements of 
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are called coefficients of the polynomial, and the degree of a polynomial is the largest natural number 
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exists. When a polynomial has all of its coefficients equal to 0, its degree is usually considered to be undefined, although some people adopt the convention that its degree is 
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A monomial is a polynomial with exactly one nonzero coefficient. Similarly, a binomial is a polynomial with exactly two nonzero coefficients, and a trinomial is a polynomial with exactly three nonzero coefficients.

Proofs for the following propositions and the definitions are contained in David Cox, et al [2] 

4.1
Monomial Ideals and Dickson’s Lemma
Definition 1 [2 P.67]: 
An Ideal 
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Monomial Ideals occur as ideals of “leading terms” of Groebner Basis.
Lemma 1: [2 P.68]
Let 
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 be a monomial Ideal and let 
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iii) 
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 is linear combination of the monomials in I

Lemma 2 (Dickson’s Lemma): [2 P.69]
A monomial Ideal 
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i.e. the ideal has finite basis.
4.2
Definition 2 of monomial orderings [2 P.53]

A monomial ordering on 
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There are three commonly used ways of ordering monomials;

Definition 3: Lexicographic Order-lex
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Definition 4: Graded Lex Order-grlex
Let 
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Definition 4: Graded Reverse Lex Order-grevlex
Let 
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More definitions 5
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The order we are using is Lex order.
Then 
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4.3
Hilbert basis theorem

The Hilbert Basis theorem guarantees the existence of a finite basis generating any ideal.

It can be stated as: “Every Ideal 
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Proposition 1
Let 
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Such 
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Definition 6
Fix a monomial order. A finite subset 
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Corollary
Every (monomial) Ideal has a Groebner Basis.
4.4
The notion of “Groebner Bases”[3]
A Groebner basis for a system of polynomials has very useful properties, for example, that a polynomial f in an ideal generated by the system is a combination of those in the system if and only if the remainder of f with respect to the system is 0. (Here, the division algorithm requires an order of a certain type on the monomials).
It’s amazing how useful theses bases are:

For example

a) Equality of ideals

Reduced Groebner bases can be shown to be unique for any given ideal and monomial ordering, Meaning that if we start with two different bases or more and we will end up with the same Groebner basis. 
b) Ideals membership (f “belongs to” I)

The reduction of a polynomial f by the multivariate division algorithm for an ideal using a Groebner Bases will yield 0 if and only if f is in the ideal. (This is not true in general for polynomials in more than one variable). This gives a test for determining whether or not a polynomial is in an ideal with a given set of generators.

c) Solving equations

Given a set of simultaneous polynomial equations, we move the solution, i.e. the constant to the left side and have the solution being homogeneous i.e. all of them yielding to zero.

Then we take each equation as a basis element for an Ideal and then using Buchberger’s algorithm we reduce them to a Groebner basis. 

E.g.
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Solution

Let 
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On reducing using  Buchberger algorithm, we get the Groebner basis as 
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This leads us to say 
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On using any other method you’ll arrive at our solution e.g. Gaussian elimination method we’d start from 
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Proposition 2
Let 
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be a Groebner Basis for an Ideal 
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Corollary

Let 
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be a Groebner Basis for an Ideal 
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We should bear in mind to compute the Groebner basis order matters i.e. we could use lexicographic, graded lexicographic or whatever we choose.
4.5  The notion of "S-polynomials''

The "S-polynomials'' are computed in two variables i.e. functions  for that matter i.e. 
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We call 
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 the LCM (Least Common Multiple) of LM(f) and LM(g). The S-polynomial of 
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We use Lexicographic order


[image: image237.wmf])

1

,

0

,

2

(

=

a

 and 
[image: image238.wmf])

2

,

1

,

1

(

=

b

 thus 
[image: image239.wmf])

2

,

1

,

2

(

=

g



[image: image240.wmf])

3

(

)

7

4

(

4

)

,

(

4

2

2

2

2

2

2

2

xz

xyz

xyz

yz

x

y

z

x

z

x

yz

x

g

f

S

+

-

-

=



[image: image241.wmf]4

3

4

7

3

xz

y

-

-

=


If we used reversed lexicographic order we would obtain:
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Theorem [2 P.82]
Let 
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 be a polynomial Ideal. Then a basis 
[image: image244.wmf]}

,...,

,

{

2

1

t

g

g

g

G

=

 for 
[image: image245.wmf]I

 is Groebner basis for 
[image: image246.wmf]I

 if and only if for all pairs 
[image: image247.wmf]j

i

¹

, the remainder on division of 
[image: image248.wmf])

,

(

j

i

S

 by 
[image: image249.wmf]G

 is zero.
5 Groebner Bases Computation and the Theory behind
Let us look at how to compute Groebner Bases over the fields using Buchberger’s algorithm.
5.1   Buchberger’s Algorithm

The general form
Consider the ring 
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We form the S-polynomials i.e. 
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If the remainder is zero in all cases then 
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This new set 
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 must be a Groebner Basis but not reduced i.e. there are many redundancies.

The following theorem will help to eliminate them.

Theorem [2 P.86]
Let 
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Then a Groebner Basis for 
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 can be constructed in a finite number of steps by the following algorithm
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Output: a Groebner Basis
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5.2  Buchberger’s Algorithm(Another version)-[10]
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Find the Groebner basis  
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 for the Ideal 
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This version gives a reduced Groebner basis i.e. it removes any repeated basis elements or any redundancies like basis elements that are linear combinations of other basis elements and the end result is almost unique.

Notice below that on computation using CoCoA  the basis we get is actually a reduced Groebner basis.
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We can check this using a computer.

Verification on the computer using CoCoA
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--Declaring the ring environment we are operating
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--Ideal whose Groebner Basis we'll compute

GB.Start_GBasis (I)

--Start computing

GB.Complete (I)


--Finish computation and finally

I. Basis



--display the Groebner basis

These are the Groebner Basis:
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Find the Groebner Basis and verify your answer. The order we are using is grlex i.e. graded lexicographic order, which works in the following way;
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We now form the S-polynomials:
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And on dividing 
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Thus the reduced Groebner basis is 
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Verification on the computer using CoCoA
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--Declaring the ring environment we are operating
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--Definition of the Ideal whose Groebner Basis we'll compute

GB.Start_GBasis(I); 


--Start computing

GB.Complete(I); 


--Finish computation and finally

I.GBasis; 



--display the Groebner basis

These are the Groebner Basis:
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The cases we tackled above were for when the coefficients come from the rational number field 
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We are now going to investigate the behavior of the Groebner Bases of a polynomial ideal whose coefficients are taken from any fields other than 
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We are using some field theory to study Groebner Bases computation over other fields other than
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, the field of rational numbers.
5.3  Groebner bases for polynomials ideals with coefficients in 
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In an example above we found that the ideal 
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We got this by use of CoCoA i.e.


[image: image344.wmf]]

,

,

)[

/(

::

z

y

x

p

Z

R

Use

=

 our ring then you just replace p with any prime number and 
there you have your 
[image: image345.wmf]p

Z

. Then use CoCoA commands for computing the Groebner Basis as usual.
We’ve found out that if
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Notice what is happening!
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We also notice that the larger the prime 
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Groebner basis are when we are getting them over the rational number field 
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There is a relationship that: for integers modulo 2, if we have the Groebner basis for I over Q, 

by reducing them modulo 2 does not guarantee getting 
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In the following pages, we show how tedious and awful it can be to compute 

Groebner basis when we get out of the rational number field. What we are doing in 

each class is the same algorithm to reduce the arithmetic outside 
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5.4  Groebner bases for polynomials ideals with coefficients in 
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To compute the Groebner bases for a polynomial ideal with coefficients in a field of Gaussian rational 
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Now we divide the 
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The Groebner basis therefore is 
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This is the same if we went on and computed directly.
An Example of a complicated problem is

Consider an Ideal 
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Now it’s clear that this would take forever to do it if we apply  B’s algorithm directly.
Let 
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By use of CoCoA we get 
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This is not exciting at all.
5.5  Groebner bases for polynomials ideals with coefficients in
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To compute the Groebner bases for a polynomial ideal with coefficients in a field 
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Example:1
Consider an Ideal 
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Working manually i.e. direct use of Buchberger’s algorithm

Let 
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Now using CoCoA we get:
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If it is the same then we are home.

We need to verify this using COCOA.

When we check using CoCoA it is the same i.e. 
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Example 2
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Working the Groebner basis directly we get
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Divide S by A
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The reminder is:=
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The Groebner basis is 
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Verification on the computer using CoCoA
Here we let 
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 we see that we arrive at the required basis very fast and with facility.
5.6 Groebner Basis for polynomial ideals with coefficients in 
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Using Buchberger’s best survey on Groebner Bases from one of his papers done in the year 1998, we apply the improved version which explains his algorithm for the construction of Groebner Basis including the use of his criteria for improving the algorithm.
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The minimal polynomial of 
[image: image477.wmf]23

z

=+

 is 
[image: image478.wmf]42

1010

zz

-+=



[image: image479.wmf]2

42

11

101

22

xxy

Iz,z,zz

zz

ìü

æöæö

=+--+

íý

ç÷ç÷

èøèø

îþ


Now computing the Groebner basis for I using CoCoA we get
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Let us look at another example of this type!
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 and the minimal polynomial obtained by squaring both sides and taking the radicals to their side appropriately we obtain 
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Now computing using CoCoA we the Groebner basis as
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On replacing back the 
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 we get 
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Which is very easy to compute.
Groebner bases over any finitely generated extensions of 
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5.6.1
Theorem on simple extensions of fields. Herstein [5]
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When we talk of 
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 above, we mean a Field (i.e. a commutative additive and multiplicative group) and the characteristic refers to the number of times 
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 if at all it ever adds up to zero. If it never adds up to zero like in the case of rational numbers Q, then the characteristic is zero.
We shall not prove the theorem but use it’s corollary i.e. 
Corollary

Any finite extension of a field of characteristic 0 is a simple extension.
Examples:
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5.6.2
 Theorem on Groebner basis over finite extensions of 
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This theorem is enables us to compute Groebner basis of any polynomial ideal with coefficients from any field, using only arithmetic over 
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Proof:
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By the introduction/definition of the polynomial 
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. This is so since on division no other polynomial’s leading term divides the leading term of 
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A basis element disappears from the basis given, when two or more basis elements have their leading terms dividing one another.
Example1:

Given 
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If we compute the Groebner basis we shall get 
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Now 
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 disappears from the basis element set

Similarly, 
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 disappears also.
Example2:

Let 
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We found out that the Groebner basis is 
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These two basis elements,
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 disappeared from the basis since their sum yields a simpler basis element 
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. This actually disappears on applying the  division algorithm.
6 Appendix

 Some functions from CoCoA
CoCoA stands for Computations in Computer Algebra which facilitates computations so that we apply our theorems without having to spent much time in computations.
CoCoA is a program used for computing numbers and polynomials. 

It works on many operating systems. It was developed by a small group of mathematicians at the University of Genova Italy and there as been collaboration with mathematicians from Universität Regensburg for computers equipped with the Windows operating system. It can be downloaded at http://CoCoA.dima.unige.it/
In our project we made use of CoCoA especially in the following:
Division Algorithm

Define the environment i.e. 
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Then give the function you want to divide 
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Now give the divisors
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The output we get are some functions that on multiplying with L plus a remainder we get F.
Computation of Groebner Basis

 Again define the environment i.e. 
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Then give the Ideal whose Groebner Basis you want to compute  
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Call the function to begin the process 
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Call a function to stop the process
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Display the Groebner Basis
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