Solutions Of Difference Equations
With Polynomial Coeflicients

DIPLOMARBEIT

zur Erlangung des akademischen Grades
”Diplomingenieur”
in der Studienrichtung
" Technische Mathematik”

verfasst von
CHRISTIAN WEIXLBAUMER
RISC Linz, Johannes Kepler Universitit

A-4040 Linz, Austria

Christian.Weixlbaumer@risc.uni-linz.ac.at

Eingereicht bei:
A.Univ.-Prof.Dr. Peter Paule

RISC Linz, Jéanner 2001



Abstract

This thesis presents detailed information about the state of art concerning the
search for solutions of linear difference equations. It especially tries to fill theo-
retical gaps and improve some of the existing algorithms.

The first chapter provides some fundamental definitions and theorems that are
used throughout the entire thesis.

The second chapter gives an overview about the theory of linear difference oper-
ators (with polynomial resp. rational function coefficients). This includes facts
about the solution space and a survey about important operations on linear
difference operators.

In the subsequent four chapters algorithms for finding polynomial, rational,
hypergeometric and d’Alembertian solutions are presented and compared.

Zusammenfassung

Diese Diplomarbeit soll einen Uberblick iiber den derzeitigen Wissensstand bei
der Suche nach Losungen von linearen Differenzengleichungen geben. Dabei
gilt besonderes Augenmerk dem Schlieflen einiger theoretischer Liicken sowie
der Verbesserung von existierenden Algorithmen.

Im ersten Kapitel werden einige fundamentale Definitionen und Sétze prisentiert,
die fiir alle folgenden Kapitel benétigt werden.

Das zweite Kapitel soll einen Uberblick {iber die Theorie der linearen Differen-
zenoperatoren (mit polynomialen bzw. rationalen Funktionen als Koeffizienten)
geben. Dies schliefit sowohl Untersuchungen iber den Lésungsraum eines Dif-
ferenzenoperators als auch die Definitionen einiger wichtiger Operationen mit
derartigen Operatoren mitein.

In den darauffolgenden vier Kapiteln werden diverse Algorithmen zum Finden
polynomialer, rationaler, hypergeometrischer und d’Alembert’scher Lésungen
préasentiert und verglichen.
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Chapter 1

Introduction

1.1 A Historical Survey

Although linear difference equations are still a current topic of mathematical
research they have a long and remarkable history. The first problem concerning
linear difference equations (recurrences) actually appeared in 1202 in the trea-
tise Liber abbaci by Leonardo da Pisa who might be better known under his
nickname Fibonacci:

7A certain man put a pair of rabbits in a place surrounded on all sides by a
wall. How many pairs of rabbits can be produced from that pair in a year if it
is supposed that every month each pair begets a new pair which from the second

month on becomes productive?”

Obviously, we get the following sequence for the number of rabbits after n
month. Note that the new number can be calculated by adding the number
of the last month and the number of the last but one month which is just the
number of the newborns:

n rabbit pairs
n=20 1
n=1 2 the "old” pair + a "new” pair
n=2 3 two ”old” pairs 4+ one "new” pair
n=3 5 three ”old” pairs + two "new” pairs

n =12 377
Thus, 377 is the answer to Fibonacci’s rabbit problem. The resulting recurrence
is
F,=F,_ 1+ F, >

Later on, an additional 1 was inserted at the beginning of the sequence and the
Fibonacci numbers were born:

(Fn) = (1,1,2,3,5,8,13,21,34, 55,89, 144, 233, 377, ...)

5
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Another interpretation for the Fibonacci numbers should not be omitted:
F,, equals the number of Morse codes of length n — 1 consisting of dots which
have length 1 and dashes which have length 2.

length Morse codes number
n—1=0 ¢ (empty code) 1
n—1=1 . 1
n—1=2 .- 2
n-1=3 | =] - 3
n—1=4 R R I e 5
n—1=5| ... [oim | = = = | == | —— | — —. 8

The recursion can be seen by the following consideration: A new code of length
n can start either with a dot or a dash. If it starts with a dot, then the rest of
the code is a code of length n — 1, if it starts with a dash, then the rest of the
code is a code of length n — 2.

More than 600 years later (in 1843) Jacques Binet published a formula that
allowed to compute the n-th Fibonacci number directly, i.e. without computing
all the other (smaller) Fibonacci numbers before:

1

s[5~

It is, however, quite certain that Binet was not the first one to find this formula!
- two other possibilities can be found in the relevant literature:

F, =

e Leonard Euler already published the formula in 1765

e Don Knuth in The Art of Computer Programming, Volume 1 Fundamental
Algorithms, section 12.8, writes that Abraham de Moivre (1667-1754) had
written about this formula more than 100 years before Binet, in 1730, and
had indeed found a method for finding formulas for any general sequence
of numbers formed in a similar way to the Fibonacci numbers.

According to Knuth Moivre was the first one who was able to solve a linear
difference equation with constant coefficients methodically. Solving equations
with variable (resp. polynomial) coefficients, however, turned out to be a far
more complex problem, especially because of the high computing effort. Seem-
ingly, the first useful general? methods came from Sergei Abramov (polynomial
and rational solutions) and later from Marko Petkoviek (hypergeometric solu-
tions) in the late 1980s and early 1990s. Among others, the search for solutions
of linear difference equations was (and is) pushed by problems concerning sym-
bolic summation.

11ike many results in Mathematics, it is often not the original discoverer who gets the
glory of having his name attached to the result, but someone later!

20f course, there existed methods for some ”easier” cases, e.g. R. W. Gosper already dealt
with inhomogeneous first order difference equations in 1978.
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1.2 Summary

We would like to give a short summary of the contents of this thesis here. This
summary will not contain explicit definitions or exact proofs, but will rather
give an overview of the main results of the thesis.

The main objective of the thesis is to provide detailed information about
the state of art concerning the search for solutions of linear difference equations
with polynomial coefficients as well as to fill theoretical gaps and to improve
some of the existing algorithms. For the software part of the thesis some of the
presented algorithms (e.g. Abramov’s algorithm for finding rational solutions
and van Hoeij’s algorithm for finding hypergeometric solutions) have been im-
plemented in MATHEMATICA.

The following chapter deals with basic notations and definitions. After in-

troducing the shift- and the difference operator we present a generalized notion
of falling and rising factorials which will enable us to write down the solution
of a homogeneous difference equation of order 1 in a very general way. Fur-
thermore, the falling factorial provides a representation of (monic) polynomials,
which is the discrete analogue to squarefree factorization. This representation
- developed by Peter Paule in the early nineties - is called greatest factorial
factorization (gff) and will be employed as an eminent method throughout the
thesis. We will, inter alia, make use of the gff-concept in a new proof of Sergei
Abramov’s algorithm for finding rational solutions and we will even offer an
explanation why the looping in Abramov’s algorithm has to be made from the
upper to the lower bound and not vice versa.
The rest of Chapter 2 is concerned with the basic definitions and some funda-
mental properties of hypergeometric terms and the introduction of linear differ-
ence equations. We decided to introduce difference equations by means of the
corresponding difference operator, as the operator notation turned out to be far
more effective and convenient.

Chapter 3 leads into the theory of (linear) difference operators. We recall
the definition of polynomial, rational and hypergeometric solutions and give a
short survey about the solution of linear difference equations with constant
coefficients. Afterwards, four important operations on difference operators are
introduced:

e the adjoint operator which can, for example, be used for factorization of
difference operators

e the symmetric product which was first introduced by Mark van Hoeij as
a discrete analogue to a corresponding operation from the theory of dif-
ferential equation. This operation will be very useful several times - for
instance, it helps to write down the algorithm for finding hypergeometric
partial solutions in a very efficient way.
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o the greatest common right divisor - first introduced by Oystein Ore in 1933
- which can be used to construct a difference equation that has exactly
the common solutions of two (or more) given difference equations

o the least common left multiple - also first introduced by Oystein Ore in
1933 - which can be used to construct a difference equation that has exactly
(the union of) the solutions of two (or more) given difference equations

Beginning with Chapter 4 we present and compare algorithms for finding
polynomial, rational, hypergeometric and d’Alembertian solutions. Each chap-
ter contains an example section where we also try to point the differing proper-
ties of these algorithms.

In Chapter 4 we first recap the algorithms by Sergei Abramov (the equation

given in terms of the difference operator) and Marko Petkovsek (the equation
given in terms of the shift operator), respectively, for finding polynomial so-
lutions of linear difference equations. Later on, we will show that these two
algorithms are not only equivalent (the degree polynomials and the degree
bounds are the same), but that Abramov’s algorithm (as it appeared in the
book ”A=B") also contains a superfluous condition.
The rest of the chapter deals with the problem of minimizing the number of
unknowns in the linear system which has be solved. We present the algorithm
of Abramov/Bronstein/Petkoviek which reduces the final linear system to n+d
equations with n unknowns (where n denotes the order and d the degree of
the difference equation). We will also show that the computed degree bound
is equal to the degree bound of the two other algorithms and that the degree
polynomials of all three algorithms are connected by a simple formula. We will
conclude the chapter with a presentation of two new algorithms for minimizing
the number of variables based on interpolation techniques. These methods -
using Lagrange interpolation and Newton interpolation, respectively - also yield
a linear system with merely n unknowns.

Rational solutions are treated in Chapter 5 in which we will first present
the algorithm by Sergei Abramov, together with the already mentioned new
correctness proof. Additionally, we analyze the general structure of a possible
denominator of a rational solution. We continue with some improvements of
Abramov’s algorithm, which can be used for other, similar, algorithms as well.
Afterwards, the algorithm by Mark van Hoeij, which was developed for systems
of linear difference equations, is recalled. We will show how to improve this
algorithm for the scalar case, as for this one the general algorithm will not turn
out to be optimal. Moreover, this variant of van Hoeij’s algorithm does not
require root finding (over the complex numbers) anymore.

In Chapter 6 - dealing with hypergeometric solutions - we present the algo-
rithms by Marko Petkovsek and Mark van Hoeij, respectively. Unlike Petkovsek’s
algorithm, which is relatively easy to understand, van Hoeij’s algorithm makes
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use of some nontrivial algebraical concepts. The algorithm - which is an ana-
logue to an algorithm for finding (hyperexponential) solutions of linear differ-
ential equations - tries to construct first order right hand factors 7 — r of a
difference equation (where 7 denotes the shift operator and r is a rational func-
tion) by finding the roots and poles of r. We will see that van Hoeij’s approach
is able to avoid splitting field computation as well as to reduce the exponentially
growing number of cases to be worked out in Petkovsek’s algorithm.

In the second part of Chapter 6 we show how to find particular (hypergeomet-
ric) solutions of linear difference equations. All these algorithms will turn out
to be generalizations of the well-known Gosper algorithm, which we will analyze
first. As mentioned before, the symmetric product operation helps to simplify
the resulting algorithms.

In the last chapter we define d’Alembertian sequences (which are a natural
generalization of hypergeometric sequences) and show how to find solutions of
this kind by means of the reduction of order method. Although this method
goes back to the 18th century the corresponding algorithm for difference equa-
tions due to Sergei Abramov and Marko Petkovsek is fairly new. Again, we will
show how to simplify this algorithm with the help of the symmetric product.

1.3 Acknowledgments

I want to thank Sergei Abramov, Moulay Barkatou, Marko Petkovsek and Mark
van Hoeij who provided me with useful information, ideas and comments. Spe-
cial thanks goes to my thesis advisor Peter Paule.

For providing me with parts of codes for my implementations I would like thank
Marko Petkovsek (for his algorithm for finding polynomial solutions) and Mark
van Hoeij (for his first Maple-implementation of his new algorithm for finding
hypergeometric solutions). Last but not least, I also want to express my grati-
tude to Axel Riese who helped me overcome some (implementation) problems
in MATHEMATICA.
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Chapter 2

Notations and Basic
Definitions

2.1

Basics

Notations 2.1.1 Throughout the entire thesis the following (basic) notations
are used:

N := {0,1,2,...} denotes the set of nonnegative integers, Z the set of
integers, Q the set of rational numbers, R the set of real numbers and C
the set of complex numbers

K denotes an arbitrary field (with characteristic zero), K[z] denotes the
ring of polynomials over K, K(z) denotes the field of rational functions
over K, K[[z]] denotes the field of formal power series over K and K((z))
denotes the field of fractional power series over K

KX denotes the set of all functions from K to K

GL,,(K) denotes all regular (non-singular) n X n-matrices over the field K
I denotes the identity matrix

L(A) denotes the K-linear hull of a set A

0;; denotes the Kronecker Delta, which is 1 for ¢ = j and 0 otherwise

Convention 2.1.2 Throughout the entire thesis we use the following conven-

tions:

0°=1
(Z)=0whenk<0 or0<n<k

deg0:= —o0

11
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Moreover we assume that the field K is computable, meaning that the elements
of K can be finitely represented and there exists algorithms for carrying out the
field operations (e.g. finding integer roots of a polynomial).

2.2 Sequences, Functions, and Operators

Definition 2.2.1 Sequences

e A mapu:N— Kis called a sequence (over K). We will denote the ring of
all sequences over K (with addition and multiplication defined term-wise)
by KN and usually write uy for u(k).

o Two sequences uy and vy are considered equal if they agree from some
point on.

o A sequence uy is called polynomial if there exists a polynomial p(z) such
that ug, = p(k) for all large enough integers k.

e A sequence uy is called rational if there exists a rational function r(z)
such that uy = r(k) for all large enough integers k.

Since two polynomials which agree on finitely many points are identical, the
polynomial defining a polynomial sequence is unique. More exactly, the ring
of polynomial sequences is isomorphic to K[z]. The same holds in the rational
case: the ring of rational sequences is isomorphic to K(z). Taking these facts
into consideration we will not distinguish between sequences and functions.

Definition 2.2.2 We define the Shift-Operator 7 as the K-automorphism of
KK by
7(y(z)) ==y(x +1) forye K<

For every integer m we define recursively:

m

™= (v

and furthermore
70 :=1id

Definition 2.2.3 We define the Delta-Operator or Difference-Operator A as
the K-automorphism of KX by

A(y(z)) ==y(z+1) —y(z) fory e K*
For every (positive) integer m we define recursively:
A™ = A(A™ )

and furthermore
A% :=id
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Proposition 2.2.4 Some simple properties of T and A:
(a) T=A+land A=7—1
(b) 7(c) = c for allc € K
(c) Alc) =0 for all c € K
(d) 7 and A and their powers are linear operators
(e) 7(f - 9) =7(f) - (g) for f.g €K
(f) 7(£) = %8 for f,g € KE
(9) A(f-9) = A(f)- g+ f- Alg) + Af) - Alg) for f,g € K
(h) A(§) = =7 ff% for f.g € K
(i) 7" (y(x)) = y(w +m) form €7
() A7) = SLo(=1)" (T)y(e +1) for m € N

2.2.1 The Falling and Rising Factorial and the GFF

Definition 2.2.5 For a polynomial p € Klz] and m € N, we define the m-th
falling factorial by

P2 =p(x)p(z —1).plz—m+1) =p-77p) - ... - 77" (p)
In particular, we have
2™ =z(x—1)...(c—m+1)

which is a monic polynomial of degree m. Similarly, we also have the m-th rising
factorial

p" =plx)px +1)..plx+m—1)=p-1(p) ... - 7™ ' (p)

and additionally

g™ =x(r+1)..(z+m-1)

Form =0, we let}%o=p6= 1.

Proposition 2.2.6 Some simple properties of the falling and rising factorial
(a) p™ =771 (p™)
(b) T (p2) = (*p) for p € K[x] and k,m € N
(c) T (p™) = (t*p)™ for p € K[z] and k,m € N

(d) m! =m™==1™ form € N
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(¢) A(@™) =m -am=t form €N
(f) (:) = z—’:_ Zg—i: (%)E

Remark 2.2.7 Observe that Proposition 2.2.6 (e) is the discrete analogue to
A(x™) = m - x™ ! with the differential operator 0.

The following definition due to Peter Paule will turn out to be the discrete
analogue to squarefree factorization:

Definition 2.2.8 Let p,p1,....,pm € Kz] and p monic. Then (p1,...,pm) is
called a greatest factorial factorization (gff) of p if the following hold:

(F1) p= pr..om

(F2) p1,..., pm are monic and py, # 1

(F3) ged(pi, 7(p) =1 for 1<i<j<m
(F}) ged(p, 7 (pj)) =1 for L<i<j<m

One can say that the gff is that product of falling factorials which takes
care of maximal chains (meaning falling factorials of maximal length). It can
be shown that every nonzero monic polynomial has a unique gff. See for ex-
ample [Pau95] (a preliminary version appeared as [Pau93]) or [vZGe99]. The
computation of the gff works analogously to the computation of the squarefree
factorization using the following lemma:

Lemma 2.2.9 Let p € K[z] monic and nonconstant with gff(p) = (p1,...,Pm),

then

gﬁ(ng@,T(p))) = (P2, ---,pm) and p1 = QLm
b3...pm

Proof: See [Pau95] or [vZGe99)

Let’s demonstrate the resulting algorithm with an example:

Example 2.2.10 Let’s compute the gff of p = x(x — 1)3(x — 2)%(z — 4)%(z — 5)
(The polynomial p is given in factorized form for clarity only).

We start with computing ¢; = ged(p, 7(p)) yielding
= —1)*z—4)
We continue with ¢; and compute g = ged(q1, 7(¢q1)) yielding

Q2=
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The next gcd-computation g3 = ged(ge, 7(g2)) already yields 1.
Now we can compute gff(p) starting with a list containing the last nontrivial
ged which is g2 = x, hence

gff = (2)

At this point we use our lemma on p = ¢; yielding

off = (Mw) = (W@«) = ((z = 1)(z — 4),2)

x2 z(x —1)
Again using our lemma on p yields

_ e (M2 0
) = o= (e

)
= (@-D(z-4),@-1)(= - 4)72?)
Remark 2.2.11 Observe the analogue: Let p = gff(p) = (p1, ..., pm), then
gff(p, 7(p)) = sff(p, 7(p) — p) = &ff(p, A(p)) = (2, -, Pm)
and let p = pl...p™ the squarefree factorization of p, then

ged(p, p') = ged(p, Op) = py..pm

,@—D@—Qw)z

2.2.2 Hypergeometric Terms

Definition 2.2.12 A nonzero sequence y is called hypergeometric iff there exists
a rational sequence r such that:

r= () Sy = Yrt1 for all large enough k

Yk
We denote the set of all hypergeometric sequences by H. The rational sequence
r s sometimes called certificate.

Example 2.2.13 Some certificates and their corresponding hypergeometric ex-
pression:

(a) T =2y, =c-2% withce K
b)) re=k+1ey,=c -kl withce K

(c) rk:k+\/§<:>ykzcl-ﬂk:cz-(k+\/§—1)EZC3'(k+\ffl) with
¢ €K

Analogously to the polynomial and rational sequences we will not distin-
guish between hypergeometric sequences and hypergeometric functions (defined
analogously). The following table sums up the correspondences and necessary
generalizations (a denotes an arbitrary element from K; we omit the possible
multiplicative constant):
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Table 2.2.2: Certificates and their corresponding sequences/functions

certificate sequence function
a ak a®
k resp. x B (k—1)! I(z)
k+aresp. z+a | a*=(k+a—1ror (*¢71) | T'(z +a) or F%Z(I)“)
L resp. J—”f(:)l Tk r(z)

In the sequel we will rather use H as the set of all hypergeometric functions
than use it as the set of all hypergeometric sequences, because it will be a little
bit more convenient. However, instead of writing I'(z) we will simply write

(x — 1)
Proposition 2.2.14 Some simple properties of H:
)=a€]K(:)y=c~aI with ¢ € K

(a) r(z) = =2
(b) r(z) = %zx—a withc e K& y=c-T'(x —a) withce K
(¢) H is a group under multiplication

(d) Every hypergeometric function u(zx) can be decomposed in the following
manner:

u(x)=c"-R(x) -T(x+a1)® ... -T(@+am)™
with ¢,a; € K e; € Z and R € K(z)
(e) H is not closed under addition

(f) Kx)* CH

(9) y € H with % =r= Tmy(y) =7 r)-..-7(r)-r € K(z) for all positive
integers m

Proof: Ad (d): Follows from (¢) and the corresponding decomposition of the
(rational) certificate.

Ad (g): Note that =@ — @) _ ") . )
Yy

TIy) T TmEy) T Ty

Note that Proposition 2.2.14 (d) shows that Table 2.2.2 already contains the
complete information about certificates and their corresponding hypergeometric
sequences/functions.

We know that H is not closed under addition - the following theorem gives
a characterization:

Lemma 2.2.15 Ify,z e H theny+ 2z € H & y/z € K(z)*

Proof: First consider y + 2 =0 % = —1. Now let y # —z:
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T(w)

= Lety—i—z:weHandlet%:ry,T(z) =r,,

z = ry, then
W+z)ry=w-ry=17(w)=7y+2)=7Y)+7(2) =y -ry+z-1;
Sy-(ry—ry)+2-(r,—ry)=0
—Casel:ry =71y Vry=ry =>2-(r,—1y) =0Vy-(ry—ry)=0=

ry =1, =1y > 7(L) = T8 = ¥y — ¥ 5 ¥ e K € K(z)*

T 1(z) T zrs
— Case 2: ry Ty ATy F 1y = L = —L=—Tw ¢ K(z)*

z Ty—Tw

<: Let y/z € K(z)*, then

Ty+2) @) +7() _ 7@

z
y+z y+z b4z

which shows that y + z € H

Definition 2.2.16 We call two hypergeometric functions y and z similar iff
y/z € K(z). In this case we write y ~ z. Otherwise, we write y = z and call y
and z dissimilar.

Proposition 2.2.17 Lety be a hypergeometric function, then the following as-
sertions hold:

(a) A(y) is hypergeometric and A(y) ~y
(b) A™(y) is hypergeometric and A™(y) ~y for all positive integers m

Proof: We will prove the first statement, the second statement follows from the
first by induction.
Let r = %, then

A = (o + 1) = @) = (o) (LD V) —y(0) - () - 1)

Because r(z) — 1 is a rational function everything is shown.
|

Lemma 2.2.18 Let fi,..., fr € H and let Zf:o fi =0 (with k > 2), then there
exists f; and f; such that f; ~ f;.

Proof: We prove the assertion by induction on k.

k = 2: See the beginning of the proof of Lemma 2.2.15.

(k—1) > k: Because Zf:o fi = 0 we have Zf:o T(fi) = Zf:o rifi = 0, too
(where r; = %) Subtracting this equation from Zf:o fi = 0 multiplied by

ri, yields
k—1

Z(Tk —r)fi=0 (2.1)
1=0
Now we have to consider two cases:
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e i such that rp = r;, then fi, ~ f;

o Vi: 1 # 4, then all (k — 1) terms of (2.1) are hypergeometric and the
statement follows from the induction hypothesis.

[ |
The following lemma is fundamental:

Lemma 2.2.19 Up to the order of the terms, the representation of a K-linear
combination of hypergeometric terms as sums of pairwise dissimilar hypergeo-
metric terms 1s unique.

Proof: Assume that ai,...,ar and by,...,b,, are pairwise dissimilar hypergeo-

metric terms with
k m
S 0= 3o £0
i=1 j=1

We will use induction on k + m in order to prove that £ = m and that each a;
equals some b;.

k+m = 0: Trivial case

(k+m —2) = (k+m): By Lemma 2.2.18 it follows that there exists some a;

similar to some b;. Relabel the terms so that ay ~ by, and let h := a — by,.
If h # 0, then Y0 a; + h = Y7 bj and ([ a; = 272, " b; — h and the
induction hypothesis (note that h is dissimilar to each arising a; and b;) implies
k=m—1and k — 1 = m, which is a contradiction. Thus h = 0 which means

k-1 -1 . .
ar = by and we have 33,7 a; = 37 b;. Now we can use the induction

hypothesis which completes the proof.

|
2.3 Difference Equations
Definition 2.3.1 An operator of the form
L= an(z)t + ... + ao(z)7° with a, € K(z) (2.2)

is called a (linear) difference operator. That means for a function y

(Ly)(z) = an(@)y(z +n) + ... + ao(z)y(z)
Of course Ly is defined for those © € K for which y(x),...,y(x + n) and
ao(x), ...an(x) are defined. An equation of the form
(Ly)(x) = f(x) or in short from Ly = f

where f is an (at the beginning) arbitrary function is called a (linear) difference
equation. The equation is called homogeneous if f = 0 and inhomogeneous
otherwise.

The set of all difference operators is

K(z)[1] = {an(z)™ + ... + ao(z)7° | n € Nyag, ..., a, € K(z)}
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Definition 2.3.2 Let L = a,(z)m" +...+ao(z)7° € K(x)[r] and L # 0. Denote
ord(L) := max(i | a; #0) —min(i | a; # 0)
order(L) := max(i | a; #0)
If all a;(z) € Klz], then we define

degree(L) := max dega;()

L is called normal if ag # 0, i.e. if ord(L) = order(L).

The leading coefficient of L is the highest non-zero coefficient of L (which
is an if ap #0).

The trailing coefficient of L is the lowest non-zero coefficient of L (which
is ag if L is normal).

L is called monic if the leading coefficient is 1.

Remark 2.3.3 Two further notations of difference equations:

e Sometimes it is useful to transform a (scalar) difference equation of order
n into a difference system of order 1 (w.l.o.g. we have a,(x) =1):

y@+n)+an—1y(@x+n—-1)+ ..+ a(2)y(x) = f(z)

can be rewritten as
TY)=A-Y+F
where
Y = (y,7(y), ., 7" ()"
F=(0,..,0, /)

and the so-called companion matrix

0 1 0 0
0 0 1 0
A=
0 0 .. 0 1
—ap —ai —a2 —Qp—1

where
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Example 2.3.4 Let’s consider the following difference operator of order 2:
L=3"—ar+zx—1
and the corresponding homogeneous difference equation
3-yz+2)—z-yz+1)+(x—-1)-y(z) =0

Now, let’s transform by hand (remember the powers of A)...

Ly = 3-ylz+2)—z-ylz+1)+(x—-1) -y(x)=
= 3'A2 y@)+3-2-y(z+1)-3y(@) —z-ylz+ 1)+ (z-1)-ylz) =
= 3-A%(@)+(6-2) yle+1)+(z—-4) yl) =
= 3-A%(z)+ (6 =) Ay(z) + (6 z) - y(z) + (z —4) - y(z) =
= 3-A%(z) + (6 —2) - Ay(z) +2 - y(x)
= 3-A%(z)+ (6-2) A ()+2'AO (2)
)

Lemma 2.3.5 Let L € K(z)[r] and y € H, then either Ly = 0 or Ly € H
together with Ly ~ y.

Proof: This is an immediate consequence of Proposition 2.2.14 (g) together with
the linearity of L.
[ |

Lemma 2.3.6 Let 7 -y := 7(y)7 for y € K(z) the multiplication on K(z)[7],
then we have:

(o) K(z)[7] is a non-commutative ring (Ore-ring)
(b) Every product of difference operators can be uniquely written in the form
(2.2), i.e. the coefficients in K(x) appear only on the left of the .
Proof: Obvious!

Example 2.3.7 Let’s consider the following multiplication:

(1=3)-(r—(z-1) =
= 7-7=-374+7-(—(x-1)+3-(x—-1) =
= 7 - 3r4+7(—z+1)r+3@x—-1)=
= P2 -3+ (—(z+1)+1)7+3@x~-1)=
= 72— (24+3)74+3(x-1)

Remark 2.3.8 Observe the following difference which will appear in the sequel:
Let L € K(z)[r] and y € K(z) then Ly € K(z), but L -y € K(z)[7].

Definition 2.3.9 Let L € K(x)[r]. If L can be written as L = Ly - Ly for
Ly, Ly € K(z)[7], then we call L1 o left hand factor and Ly a right hand factor
of L.



Chapter 3

Basic Theory About
Difference Operators

3.1 Solutions of Difference Equations

Definition 3.1.1 A (nonzero) sequence u(0),u(1), ... of numbers, that means a
function u : N — K is called a solution of a difference operator L iff L(u) = 0,
i.€.
(Lu)(z) = an(x)u(z +n) + ... + ap(x)u(z) =0
Again, we will use functions instead of sequences, thus, we define the kernel of
L by
V(L) :={u e K| Lu) =0} =2 {u e K | L(u) = 0}

Later on, we will be interested in spaces like V(L) N K[z], V(L) N K(z) or
V(L) N H, rather than in finding only a closed form expression for u(z) resp.
u(k) - this would suffice to compute for example 4(1000000) without knowing
1(999999), 4(999998) and so on. In [Mal00] Ranjan Mallik presents such a closed
form expression: The (in fact huge) formula is given in terms of the index k and
n = order(L) initial values and is even valid for arbitrary (complex) functions

a;(x).

The following theorem sums up some of the most important facts about
V(L) - the solution space of a difference equation:
Theorem 3.1.2 Let L = an(z)m" + ... +ao(z)7° with ar € K(x) and ag,an, # 0
(a) V(L) is a vector space over K
(b) dimV(L)=n

(c) If u* is a (particular) solution of Ly = f, then all solutions of Ly = f are
of the form u*+u, where u € V(L). In other words: The solution space of
Ly = f is the affine space u* + V(L).

21



22 CHAPTER 3. BASIC THEORY ABOUT DIFFERENCE OPERATORS

(d) V(L) =V (r- L) for every r € K(z)*
Proof:

(a) This follows immediately from the linearity of L: Let u; € V(L) and

¢; € K, then
L(Zcz - ui) = Zci - L(uz) =0
(b) See [PWZ96], Theorem 8.2.1
(¢) Let Lu* = f and Lu =0
o First, we show that u+u* solves Lu = f: L(u+u*) = L(u)+ L(u*) =
0+f=f
e Conversely, let v be an arbitrary solution of Ly = f, then for v — u*

we get: L(v —u*) = L(v) — L(u*) = f — f = 0, which implies that
v —u* € V(L), and that means v = (v — u*) + u*.

(d) Clear!

Remark 3.1.3 Remarks on Theorem 3.1.2

o Although the fourth statement of Theorem 3.1.2 seems to be trivial, it
enables us to multiply a given difference operator (resp. a homogeneous
difference equation) by a rational function without changing the solution
space. We will make use of this several times, either for making the dif-
ference operator monic, or in order to get polynomial instead of rational
coefficients.

o Obuviously, there exists a 1 — 1 correspondence between a hypergeometric
function y with its certificate r and the difference equation of order 1
(r—r)y=0.

Example 3.1.4 Consider L = 7 —2(xz + 1) with the solution y(z) = ¢-2% -2! =
c-27-T'(z+1).

The following Theorem deals with the special case ”constant coefficients”:

Theorem 3.1.5 Let L = an7" + ... + aor® with ay € K, where ag,a, # 0
and let A1, ..., A\, € K be the roots of the characteristic equation L = 0 with
multiplicities 1, .., T, respectively, then

V(L) = {A], 2], .., ™ A], . AT s ™ AT}

o Ay

In other words, the general solution of Ly = 0 is given by

ORI AC
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where py,(x) denotes an arbitrary polynomial of degree r;.
If all roots are distinct, then

y(@) =) et
i=1

with arbitrary ¢; € K.

Proof: The special case with all roots are distinct follows directly from the
factorization of L = (1 — A1)...(T — An), which commutes as we are computing
in the commutative ring K[7]. For the general case it is sufficient to check that
y(z) = AN(co + 1z + ... + ¢,2") is the general solution of (7 — A)"y = 0, which
is no problem.

It should be mentioned that using the powers of a companion matrix the
general solution of a homogeneous difference equation with constant coefficients
can be obtained without finding roots of the characteristic equation:

From Remark 2.3.3 we get

TV)=A-YV=72YV)=74-Y)=1(A)-7(Y) = 4>V
Analogously, we get
™Y)=AF.Y resp. Y(k)=AF.Y(0)

where Y (0) contains the initial values. Thus, knowing a formula for A suffices
to get a closed form expression for the solution Y. Such formulas for A* can be
found in [Mal00] or in [ChL096].

The next Lemma indicates the importance of right hand factors:
Lemma 3.1.6 Let Ly be a right hand factor of L, then V(L) C V(L)

Proof: As L, is a right hand factor of L, there exists an difference operator Lg
such that L = Lo - L1. Let y € V(L) then Ly = Lo - L1(y) = Lo(0) = 0, thus
y € V(L).

[
3.2 Operations on Difference Operators

3.2.1 The Adjoint Operator

Definition 3.2.1 Let L = Y, _, ax(z)7* € K(z)[r] be normal, then the adjoint
operator L* is defined by

n n
L* = ZTkan_k(x) = Zan_k(aﬂ + k)"
k=0 k=0
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Proposition 3.2.2 Let L, M € K(z)[r] and let n = order(L), then
(a) (L*)*=7"-L-77"
() (L-M)*=(r"-M*-77"). L*

Proof: Let’s prove the first statement, thus let L = >_7_ ax(2)7*, then
k=0

L) = (Yanr@ b)) =3 rFan @+ - k) =
k=0

k=0
= Zrk (ax(z +n—k))rh = Z ap(z +n)m* =
k=0 k=0
n n
= Z 7™ (ap(z)TF") = " Z ap(@)thr =" L.
k=0 k=0

Remark 3.2.3 Let L = Ly Lo, that means that L has the left hand factor Ly and
the right hand factor Lo, then - see Proposition 8.2.2 - L* = (- Ly -7~ ™)- L}.
Thus LY is a righthand factor of L* and " - L3 -7~ ™ is a left hand factor of L*.
We can simply say: Left hand factors of L correspond to right hand factors of
L*, and vice versa.

Lemma 3.2.4 Let L=7—7r. Ify € V(L), then % € V(L*)

Proof: Trivial, because by definition L* = 7(r) -7 — 1

3.2.2 The Symmetric Product

Definition 3.2.5 Let Ly, Lo € K(z)[r] be normal and at least of order 1. The
symmetric product L = Li®Lsy is defined as the normal monic operator of
minimal order such that y1y2 € V(L) for all y1 € V(L1) and y2 € V(Ls).

Remark 3.2.6 Using the relation Li(y1) = 0 we can write any 7' (y1) as a
K(x)-linear combination of 7°(y1), ..., 7™ 1 (y1) where n is the order of Ly, and
similarly for the 7°(y2). Then L can be obtained by computing a K(x)-linear
combination of y1y2, 7(y1)7(y2), ... which leads in general to a system of linear
equations.

As a special case we will need the following lemma later on:

Lemma 3.2.7 If L1 =7 —r with r € K(z)*, u € H with Li(u) =0, and Ly is
monic and normal then

1
Li®Ly = Ly®Ly = """ (u) - Ly - = € K(z)[7]
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Proof: First of all, it should be obvious that L := 7°74¢7(L2) (y) - L, - L is monic.
Let yo € V(L) then L(u - y) = (7°7%"(F2) (y) - Ly)(y2) = 0. Therefore L has
the same solution space as Li(S)Ls.

It remains to prove that L € K(z)[r]: Note that Ly -v € v - K(z)[r] for every
v € H, so rorder(la)(y) . Ly - L g porder(La)(y) . L. K(z)[7] = K(z)[r], because
rorder(L2) (y) . % € K(x).

Remark 3.2.8 Of course the symmetric product in Lemma 3.2.7 can be com-
puted without the solution uw of T —r: Let L=y _, prT® with po, pn # 0O then
(remember Proposition 2.2.14 (g))

= ZPkT"(U) T’“tu) * =
k=0

~
S

LO(r—r) = 7(u)- ‘%ZT”(U)'ZPM’“.
k=0

™(u) wu _ o) () o _
Pr—, Tk(u)Tk—];)Pka—1(r).m. .er_

n

peF(r) - TR () - LT ()R = Zpk l:[ 7 (r)rk
k=0  j=k

Analogously, we get

1 n n—1 1 1 n k—1 )
L@ - —) = - k = —n—1 ., ~ J( ) b
(T r) };)pk ]l;lk TJ(T)T szol 7 (r) ,;pk]l;IOT nr

Proposition 3.2.9 The set of all normal and monic difference operators with
the symmetric product form a (commutative) monoid with the neutral element

7—1. Difference operators of the form T —r with r # 0 have the inverse element

1
T i

Proof: Just do easy checks!

3.2.3 The Greatest Common Right Divisor

Definition 3.2.10 Right hand division: Let F(7),G(7) € K(x)[r], with degrees
n and m, respectively. Then there exists unique polynomials Q(7) and R(T) with

F(r) =Q(7) - G(r) + R(7)
where the degree of Q(7) is n —m and the degree of R(7) does not exceed m —1.

Like in the commutative case we can now perform the Euclidian Algorithm
which yields the greatest common right-divisor (GCRD) of two polynomials:
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Definition 3.2.11 Let Fi(7), F»(7) € K(z)[7], and let

Fi(r) = Qu(r)- F(r) + F3(7)
Fy(1) = Q21) - F3(1) + Fi(1)
(3.1)
Froa(m) = Qn-2(7)  Fpe1(7) + Fp(7)
Fooi(1) = Qua(7) - Fo(7)

be the Euclidian Algorithm then we define:
GCRD(Fl,FQ) = Fn

The GCRD(F1, Fy) is defined as the polynomial of mazimal degree, which is a
right hand factor of both, F1 and F». Requiring that the GCRD is monic makes
it uniquely defined.

3.2.4 The Lowest Common Left Multiple

Definition 3.2.12 Let F(1),G(7) € K(z)[r]. The least common left multiple
of F and G LCLM(F, G) is defined as the polynomial M of lowest degree which
is Tight hand divisible by both, F' and G. Requiring that M is monic makes it
uniquely defined.

Theorem 3.2.13 Let a Euclidian Algorithm of Fi(r) and Fy(t) of the form
(3.1) is given, then

1 1 1

LCLM(Fl,FQ) — Fn—l('r) . m .Fn—Q(T) . m

. Fl(T)

Proof: See [Ore33], Theorem 8
Corollary 3.2.14 Let Fi(7), Fo(7) € K(z)[7], then:

deg Fy + deg Fy = deg GCRD(F}, Fy) + deg LCLM(Fy, F)
Proof: Follows directly from the formula in Theorem 3.2.13
Corollary 3.2.15 Let r # s nonzero rational functions, then:

_ 1 2 S 7'(7“) rs
LCLM(T—T,T—S)—W-T _(s—r T(S)—T(T))‘T_}_S—T'

Proof: Let’s do first the GCRD-Computation (of course the GCRD has to be
constant with respect to 7 as r # s):

T—r = l-(t—8)+s—r
1 s
TS = (T(S)—T(T)T_S—T).(s_r)
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This leads to the following LCLM-Computation:

LCLM(T—T,T—S):(T—s).SiT.(T_r):
= (- ) =
- e TGS ) T

Corollary 3.2.16 Let L € K(x)[r] and let R € K(z) be the remainder of the
right hand division of L and 7 —r with r € K(x)*, then (for R#0)

1 1 T
LCLM(L7 =) =(r =1 L= (57— ) - L
Proof: Just like before!
|

Remark 3.2.17 By Lemma 3.1.6 we realize that Corollary 3.2.16 provides an
algorithm to construct - step by step - a difference equation (resp. difference
operator) which has exactly some given solutions.

Example 3.2.18 How does the (normalized) difference operator with the solu-
tions 3% and z! look like? We only have to compute LCLM(1 — 3,7 — (x + 1))
with our LCLM-formula:

3 +1 3-(z+1
i 3@+l

1
LCLM(r = 3,7 = (v + 1)) = TGt ) T e

z—1

Normalization yields

T2_$2+3x—7‘7_+3(x+1)(x—1)
z—2 z—2

or without denominators as a polynomial in x and T:
(x—2)-7° = (@®+32-7) -7+ 3@+ 1)(z—1)
Summing up all facts of this chapter we obtain (remember Lemma 3.1.6):
Theorem 3.2.19 Let Ly, Ly be difference operators, then:
(a) V(Li®L2) = V(L1) - V(L2)
(b) V(GCRD(L1, L2)) = V(L1) NV (Lo)
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(¢) V(LCLM(Ly, L2)) = V(L1) UV (L2)
(d) Ly is a right hand factor of Lo if and only V(Ly) C V(Ls)

Proof: ad (d): The implication from the right to the left follows directly from
(b) and the definition of the GCRD: GCRD(Ly, Ly) = Ly

Remark 3.2.20 Note also the following special case of Theorem 3.2.19 (d): Let
(t—r)y =0, then 7 —r is a right hand factor of a difference operator L if and
only if y € V(L). Thus, we have a 1-1 correspondence between hypergeometric
solutions and monic first order right hand factors.
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Polynomial Solutions

4.1 The Basic Idea

Problem 4.1.1 We are given the following problem: Find all (nonzero) poly-
nomial solutions y € K[z] of Ly = f, where we suppose the following:

e L=Y 7 p(z)-7F
e pi(z) € Klz]
*pn#0,p0#0
o f€Kz]
The general idea in order to solve Ly = f is very simple:

1. Find an upper bound N for the possible degree of polynomial solutions of
Ly=f.

2. Given N, describe all polynomial solutions having degree at most V.

In the following two sections we will present Sergei Abramov’s (in [Abr89al)
and Marko Petkovsek’s (in [Pet92]) approaches to determine a degree bound
N. Comparing both methods we will see later on (section 4.6) that they are
equivalent and therefore lead to the same bound.

As the method of undetermined coefficient for the second step is usually used,
we have to solve a linear system of equations with NV + 1 unknowns afterwards.
In sections 4.4 and 4.5 we will show how to minimize this number of unknowns.

29
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4.2 Abramov and the Delta-Operator

Abramov’s idea was to (re)write the difference operator L in terms of A instead

of :
n n n

S op@) =S @) - (A+1)F =Y qule) - AF
k=0 k=0 k=0
where . .
(@) =3 (1 )pi(a) (4.1)
4k ; (k>10

We will now show, how to find a degree bound N for a polynomial solution
of Ly = f: Suppose y(z) = ZZ:O amx™ with a, € K and ay # 0 then:

n N
deg (Z Qi () - A* ( Z amxm)>
k=0 m=0
N
OrSn}?SXn <deg qr(z) + deg A* ( Z amxm)>

m=0

deg Ly

IA

0<k

omax (degqr(z) — k) + N

max (degqy(2) + (N —k))

Let
b:= omax (deg qi(z) — k)

then we have to consider two cases:
e f=0=>b+N<0&b+N<-1&N<-bH-1
o f# 0<% deg f > 0: In this case we consider two subcases:

—degLly=N+b=>N+b=degf < N=degf—b
— deg Ly < N + b: This means that the coefficient of zV*? vanishes,
thus

n

ay Y le(gi(@)-NE=0
dcg(:kz]o—k=b

Defining gi,; as the coefficient of 27 of g (z), we have

n
an Z%,bﬂ "NE=90
k=0

Because ay # 0, this means that N is a (integer) root of the degree
polynomial

n
az) == qu,bﬂ- -22=0
Jj=0
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By these considerations we have proven the following theorem:
Theorem 4.2.1 Let
n
D oan(@) Af(y) = f
k=0

where y is a polynomial and let gy, ; be the coefficient of x7 in qx(x). Let

b:= onax (deg qi(z) — k)

and
n .
a(z) == qu,bﬂ- -2
7=0
additionally. Then degy < N, where
N :=max({z € N:a(z) =0}U{deg f —b,—b—1})
The resulting algorithm is as follows:

Algorithm 4.2.2 by Sergei Abramov
INPUT: Ly = f with

o L=3 opk-T" where p; € Kz]
® po,pn # 0
o f€Kz]
OUTPUT: The general polynomial solution over K of Ly = f
BEGIN
FOR k € {0,1,...,n} DO ¢, :== Y1, ({)pi
b:=max{deggy — k|0 <k <n}
N :=max({z € N: 37 ¢jpyj - 22 =0} U {deg f — b,—b—1})
IF NeN

THEN Use the method of undetermined coefficients to find the gen-
eral polynomial solution over K of degree at most NV of Ly = f

ELSE Return (
END

Remark 4.2.3 Remarks on Algorithm 4.2.2:
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o It was first shown in [PeWe00] that the —b — 1 is not necessary at all in
order to compute the degree bound N! We will come back to that interesting
fact in section 4.6.

o Observe that using the method of undetermined coefficients yields a linear
system of equations which is already in triangular form.

o Of course, it may be that the algorithm computes a degree bound N > 0
though no nonzero polynomial solution exists, i.e. the final linear system
has either no or only the trivial solution. See Example 4.7.3.

4.3 Petkovsek and the Shift-Operator

Let’s follow Petkovsek’sidea in [Pet92] which is just the straight forward method
- however, this approach is not as simple and short as Abramov’s one:

Suppose we have (at the beginning we restrict ourselves to the homogeneous
case Ly = 0):

L = Zpi(x) T
=0
d .
pi(x) = ZopiJ -2’ where d := degree(L) = Orgagc deg p;
J:

and suppose y(z) = Y n_, ay - #¥ (with ay # 0) is a solution of Ly = 0, then:

n d
Ly = ZZ i, -l T(Zak ac)z

=0 j=0
n d N

3 T e
i=0 j=0 k=0
n d N LI

= Z ZP‘,j%Z(l)ik_lxlxj:
i=0 j=0 k=0 =

n N k
— Z Zzp’]ak(>-k—1xl+j:0

i=0 7=0 k=0 (=0

Setting j = r — [ (observe the bounds for r!) and changing the order of summa-
tion yields:
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By comparing coefficients and setting [ = k— j we get (using also the symmetry-
property of the binomial coefficient):

vr € {0,1,....,d+ N} : Za,jj( )Zzp” ki =0 (4.2)
Step 0: First, we look at r = d + N get (note that p; g4; = 0 for j > 0)

an Z ( ) Zl Di,d+ N-N+j; = AN (J(\)[) Zpi,d =an Zpi,d
i=0 i=0

=0

By assumption ay # 0, thus we come up with the first necessary condition® for
the existence of a polynomial solution:

> pia=0 (4.3)
1=0

Step 1: Let’s go back to (4.2) and take a look at r = d+ N — 1 (again note
Pi,d+N—k+; =0 for N—k+j> 0):

d 1
0= ¥ az()ZWMH_
=N-—

k 1 7=0 =0
= an-— N- szd +aN zpzd 1+ =
0
H/—/
0 by (4.3)

n n
N (N : Z ipsa + Zpi,d—1>
=0 =0

The last equation now implies two possibilities: Either NV is the (positive integer)
root of the linear equation

n n
N- Z ipid + Zpi,d—l =0
i=0 i=0
and we are done or
n n
> ipia=Y pia1=0 (4.4)
1=0 1=0

In the latter case we can go back to (4.2) and take a look at r =d + N — 2:

1We will see that this condition can also used in the rational case. See the ”Fast negative
criterion” on page 64
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N _2 n N 2 JA noo
() S+ £ E () S

=0 k=N—-1 j=0 i=0

N —
0 by (4.3)

1 n 2 n

N -1 y N L
= o S (V) S van 2 () Siaan =

j=0 =0 j=0 =0

0 by (4.4)

N\ . N - . N\ «
= aN<<2) ZOlQPi,d + (1) ;Zpi,dfl + (0> Zopi,d2)
1= 1= 1=

Again, there are two possibilities: Either N is a (positive integer) root of the
quadratic equation

N n \ N n . N n
(2) ;1 Di,d + <1> ;lpi,d—l‘i‘ (0) Zpi,d72 =0

=0

and we are done or
n n n
) .
E 1"Pid = E Pid—1 = E Pi,d—2 =10
i=0 i=0 i=0

Termination Step: This procedure can be done on and on, but - at the
latest - after n steps it terminates, that means we show, that not all appearing
equations can vanish identically! After s steps we come up with the following
equation (we set p; 4—s to zero when d — s < 0):

N n . N n ot N n
(s) ZZ Pid + (s B 1) ZZ Pid—1t+ -+ Zpi,d—s =0 (45
=0 1=0 1=0
Obviously, all appearing equations up to the n-th contain the leading coefficients
n
Zz’spi,d for 0<s<n
i=0

If all those were zero, then we would get a linear system of equations for
P0,ds -+ Pn,a With the Vandermonde matrix ()7, _o. Thus, all p; 4 would be
zero which would be a contradiction to the definition of d.
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Inhomogeneous Step: The inhomogeneous case does not make any prob-
lems! Suppose we have found (the first) s, such that (4.5) does not vanish
identically and we found possible values for N. This means that the coefficient
of £V =5 of Ly is zero. On the other hand this coefficient may be equal to the
leading coefficient of f which implies

d+N—-—s=degfeo N=degf+s—d
Let’s formulate the resulting algorithm:

Algorithm 4.3.1 (PolyTau) by Marko Petkovsek
INPUT: Ly = f with

e L=Y"p; T where p; = E?:o pij - ¥ and d := maxg<i<n, degp;
® Do, Pn # 0
o f€Kz]

OUTPUT: The general polynomial solution over K of Ly = f

BEGIN
s:=-1
REPEAT

s:=s+1
FOR j € {0,1,...,s} DO b\ := 37 [ i7p; o4

UNTIL 3j € {0,1, ..., s} such that b\ # 0
N :=max({z € N: D(2) := Y5, ()05 = 0} U {deg f + s — d})
IFdeN

THEN Use the method of undetermined coefficients to find the gen-
eral polynomial solution over K of degree at most N of Ly = f

ELSE Return 0
END

Remark 4.3.2 Remarks on Algorithm 4.5.1:
e The polynomial D(z) is again called degree polynomial (of Ly =0).

o Observe that using the method of undetermined coefficients yields a linear
system of equations which is already in triangular form.
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o Of course, it may again be that the algorithm computes a degree bound
N > 0 though no polynomial solution exists, i.e. the final linear system
has either no or only the trivial solution.

o A MATHEMATICA-version of Algorithm 4.3.1 (over C) has been imple-
mented by Marko Petkovsek and is part of the package ”Hyper” which is
available at his homepage (http://www.fmf.uni-lj.si/~petkovsek/).

4.4 Minimizing The Number Of Variables

In this section we will follow [ABP95], which describes in a very general way
the search for polynomial solutions for differential, difference and ¢-difference
equations.

The critical part of the algorithms of Abramov and Petkovsek is the method
of undetermined coefficients, because the number of unknown coefficients, N +1,
is often much larger than the order of the equation, n. We will show how two
reduce the procedure to a system of n+d equations (where d denotes the degree
of the difference equation) with only n unknowns.

It will be convenient to write the difference operator L again in terms of A.
Moreover, in this section we will use ”r” instead of "n” for the order of L:

Problem 4.4.1 We have given the following problem: Find a (polynomial) so-
lution y € K[z] of Ly = f, where we suppose the following:

o L=3oa(x) A

pr(2) € Ka]

pr #0,po #0

o e Kz

o d =degree(L) = max{degqxr(z) |0 <k <r}

The main idea of Abramov, Bronstein and Petkovsek is the extension from
polynomials to formal power series. At the beginning we look for a formal
power series solution of Ly = f, later we use an upper bound for the degree of a
polynomial solution (which will be very similar to the previous algorithms) and
cut the formal power series. The second main difference between this approach
and the last will be the use of another power basis, not the usual z".

We will divide the derivation into three steps.

e Step 1: Define an appropriate power basis and extend it to formal power
series

e Step 2: Transform Ly = f into an equivalent recurrence

e Step 3: Find an algorithm to solve the new recurrence
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Step 1: Define an appropriate power basis We need an (infinite) se-
quence of polynomials (P, (x)) from K[z] such that

(P1) deg P, =nforneN

(P2) Py, |Pofor0<m<n

(P3) Let I, : K[z] — K linear functionals such that {,,(Pp,) = dmn-
(P4)

P4) Given a difference operator L, there must exist A, B € N and elements

a;j(n) e Kforn e Nand i € {-A,—A+1,..., B}, such that

B

LP, = Z a;(n) Pnyi (4.6)
= A

with the restriction that a_ 4(n) is not identically zero. We take Py to be
zero when k£ < 0.

Remark 4.4.2 Because of (P1), (P2) and (P3) the set { Py, P1,...} is a basis of
the K-linear space K[z] and every polynomial from K[z] has a unique expansion
in terms of polynomials P,(x). Furthermore

degp

p(x) = Z In(p)Pr(z) for all p € Kz] (4.7)
n=0

Example 4.4.3 We consider two possible bases:

(a) P,(x) = (w;—?)" where a € K is arbitrary. Then 1,(p) = p™ (a) and (4.7)
is Taylor’s formula for p(x). A problem appears only for property (P4) -
this power basis does not satisfy it!

(b) Pu(x) = (%) where a € K is arbitrary. Then l,(p) = A™(p(a)) and (4.7)
is Newton’s interpolation formula for p(x). In the following we will show
that this power basis satisfies (P4).

We start with a variant of the the so-called Chu-Vandermonde identity:

() =206

Multiplying by (?) and extracting/revising binomials yields
() =y e mm)! m\
m)\n) = & =m0t i-n) W@

Canceling (z —m)!, extending by 7! and reordering yields

() ) == () o=

1EZ
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By simplifying to binomials and replacing z by x — a, we finally get
) m
P,P, = P 4.8
whe= 2 () () e
On the other hand we have
T T
LPy =Y quA*Py =) qiPn x
k=0 k=0

Using (4.7) on ¢ we get

r degaqr
LP—ZZZQkPPnk—ZZl (qx)PjPy_i
k=0 j=0 k=0 j=0

Now we use (4.8) which yields

- S0
= ;;Zj(qk)iezz <njz> (i_ik)Pn-i-i

Now the second binomial coefficient is zero if i + k < 0, which is always the case
if i < —r. Furthermore this binomial coefficient is also zero for ¢ + &k > j, which
is always the case if 4 > d. Therefore:

£ % (1) L)

k=0 j=0 i=—7 J

- zzz(”j’)(z;k)uqn

i=—r k=0 j=0

LP,

Comparing this with equation (4.6) of (P4) we read off
A=r
B=d

=3 () (e (4.9)

k=0 =0 ']

Remark 4.4.4 For sake of simplicity we will go on writing P, 1, and a;(n)
instead of (z;“), A", and (4.9), respectively. We will also write A instead of
r and B instead of d.
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Before we can proceed to step 2, we have to extend (4.7) to formal power
series: Let K[[P,]] denote the algebra of formal power series of the form

y(@) = 3 enPale)
n=0

where ¢, € K and let I : K[[P,]] = K be linear functionals (the extensions of
the I,,) such that I,,(s(z)) = c,.

Step 2: Transformation to an equivalent recurrence We will now sup-
pose that the solution y of Ly = f is a formal power series and we will transform
Ly = f to other equivalent equations. Afterwards we will search for a degree
bound for y which enables us to show a theorem on which our algorithm will be
based.

Ly=f & LO_ LWP)=f

B—-1 B

ai(n)in(y)PnH + Z Zai(n - Z)inﬂ(y) =f

n=04i=—A n=0 i=n

=0

The second double sum is zero by defining I}, to be zero if k¥ < 0. Now shifting
n by —t¢ and reordering yields

Ly=f& i ( i ai(n — i)zn—z'(y))Pn =f

n=0 =—A

Now the following step seems to be natural - comparing coefficients, which means
(after the substitution —i for i):

A
Z a_i(n+Dlpti(y) =1L (f) for all n. >0 (4.10)
i=—B

Now we gained a recurrence (in n, not in = as we are used) for the unknown

sequence (In(y)) € K of order A + B (in fact A + b, where b < B is considered
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in the following Lemma 4.4.5) with leading coefficient a_ 4(n + A). Note that
the recurrence is homogeneous for n > deg f.

Lemma 4.4.5 Let a;(n) be defined by (4.9), then
b:=max{degg, — k| 0< k <r} =max{i € Z | a;(n) # 0}
Proof: In the following lines keep the possible values for j, k£ and n in mind!

max{i € Z | a;(n) Z 0} =
= max{i €Z|In >0:q;(n) #0} =

= matiez|Bikn: (") 20a (1) #orsa) 20y =

= max{i€Z|3jk: (Zik> £0A1i(qr) #£0} =

= max{it€Z|3j,k:j>i+kANj>degqs} =

max{i € Z | Jj,k:j=i+kAj>degqr} =

max{i € Z | 3j: j =degqj—i} =

= max{1 €Z|3Ik:k+1i=degqy} = max{degqr — k|0 <k <r}

With this b - which is in fact the same as in Abramov’s Algorithm 4.2.2 -
and the corresponding polynomial a;(n) we can now prove the degree bound
for a polynomial solution. Note the similarity to Theorem 4.2.1!

Theorem 4.4.6 Let Ly = f where y is a polynomial and let b as in Lemma
4.4.5. Then degy < N, where

N =max({z € N: ap(z) =0} U {deg f —b,—b—1})
Proof: We distinguish two cases:
e Case . N+b<0=>N<-b=>N<-b-1

e Case 2: N +b > 0 = equation (4.10) holds for all n > N +b > 0. Let’s
consider equation (4.10) with n = N + b, which becomes

A
Z ai(N 4+ b+ ) ngpi(y) = Ivgs(f)

i=—b

Now, by the degree bound we know that Iy444:(y) = 0 when i > —b, thus
ay(N)In (y) = Ings(f)

In this case we consider two subcases:
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— Case2.1: degf > N+b&e N <degf—5b

— Case 2.2: degf < N+b = Intp(f) = 0 = ap(N)in(y) =0 =
ap(N) =0, because Iy (y) is a constant different from zero.

Remark 4.4.7 Comments to Theorem 4.2.1 in comparison to Theorem 4.4.6:

(a) Note that - in contrast to Theorem 4.2.1 - in the above proof we did not
need the exact (explicit) definition of the difference operator L (with all
its coefficients). Of course, the entire information of L is implicitly given
by the a;(n).

(b) Unlike in Theorem 4.2.1 the —b — 1 is essential and can not be discarded
(see Example 4.7.5). However, we will show in section 4.6, that the degree
bounds N are the same.

Let’s turn to the promised Theorem for the algorithm:

Theorem 4.4.8 Let N and b be defined in Lemma 4.4.5 and Theorem 4.4.6
with N > 0. Then for every y € K[[P,]] the following two statements are
equivalent:

(a) y is a polynomial which satisfies Ly = f

(b) The sequence (I,(y)) satisfies (4.10) for n < N +b, and I (y) = 0 for
n> N.

Proof:

(1) = (2): We already derived that (I, (y)) satisfies (4.10) even for n > 0.
Moreover I,(y) = 0 for n > N, because degy < N.

(2) = (1): We know that (l,(y)) satisfies (4.10) for n < N + b. For
n > N + b the left hand side of (4.10) is zero, because for n > N + b all
Inyi(y) are zero. Also, n > N +b > (deg f —b) + b = deg f, thus the right
hand side of (4.10) is zero as well. It follows that (4.10) is satisfied for all
n > 0, which implies that y satisfies Ly = f. Because of I,(y) = 0 for

n > N this y is also a polynomial.

Step 3: The Algorithm Because of Theorem 4.4.8 we can immediately for-
mulate the (rough) algorithm:

Compute polynomial solutions y of Ly = f by:

1. Compute all vectors (I—p(y),{—p+1(y), - IN+a+6(y)), Which satisfy (4.10)
for0<n<N+b
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2. Select those vectors with I,,(y) = 0 for n < 0 and for n > N

3. Compute y by (4.7): y = Ziv:o In(y) Pp ()

In the following we will show how to do this by using recurrence (4.10) in the
forward direction, taking conditions at one end as initial conditions and those
at the other end as constraints on the free parameters.

Let’s denote I,,(y) by v, for n € {=b,—b+1,..., N + A+ b}. We have to set
up a basis of dimension A + b equaling the order of the recurrence. Using the
condition l~n(y) = 0 for n < 0 we already get b initial values, thus we only have
to set up a basis of dimension A:

We can set v§) = 0 for n € {-b,-b+1,...,—1} and j € {1,2,...,A} and we
set v = Ont1,; for n € {0,1,..., A—1} and j € {1,2,...,A}. Denoting this
initializations by V we have

’U(_lg v(_é) 0 0 0

1 s 0 0 0
sl e]]

V = 1)(()1) g eeey U(()A) = 0 5 1 5 5 0
U1 U1 0 0 .

1: ;‘ : : 0

’Uz(‘lll v,(4—)1 0 0 1

If the recurrence is inhomogeneous, we also need a vector for the particular
solution, which we will denote by g. At the beginning we set

9=1(90,91,--94-1)" :=(0,0,...,0)".

Now we use recurrence (4.10) in the forward direction and extend V and
g by calculating all other v’ and g, for n € {A,A+1,..,N + A+ b} and
je{L,2,... A}

. 1 R )
’Ugj) = _a_A(n) . i:E - ai—A(n - l)vn]—i (411)
1 (l (f) - A§+ba- (n— i)l ) (4.12)
gn afA(n) A i=1 = " ‘

Looking at these equations we should guarantee that the denominator a— 4(n)
never vanishes - we will do that at the end of the derivation.

After the extensions V contains A vectors with length N+ A+ b+ 1 and gis a
vector of length N + A+ b+ 1.
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What remains is the condition I,,(y) = 0 for n > N, which means that

A
vn =Y Ao =0forallne{N+1,N+2,.,N+A+b}

=1

This leads to the following linear systems, for the homogeneous and inhomoge-

nous case, respectively:

1
vg\flrl

o0
N+A+b

1
Ugvzi-l

e
N+A+b

A
UJ(Vle

oA
N+A+b

A
UJ(\H)-I

oA
N+A+b

A1
A
A1

Aa

(4.13)

gN+1
- : (4.14)

IN+A+b

Now the general polynomial solution of Ly = f can be computed as follows:

e Homogeneous case Ly = 0: Let Ay, ..., Aa be the general solution of (4.13)

then

n=0 j=0

N A
y= Z Z/\jvgj)Pn =

A N
Z )\j Z ’Ugj)Pn
7=0 n=0

e Inhomogeneous case Ly = f: Let A1,...,A4 be the general solution of

N A N ‘
y=2 gnPut D N ) vl Py
n=0 7=0 n=0

As mentioned we want to show that during the calculation no vanishing
denominator appears, thus, it suffices to show that a_4(n) # 0 for n > A.

(4.14) then

Since

a_a(n+ A)

EE( 7

k=0 j=0
4 d

SR

d

S5 () -5 (-

k=0 j=0 =0
d
= > liar) <(n +j) - a) =g (n+a)#0
=0

by the following choice of a (which we have not determined up to now) in the
power basis (*7%), no problems come up: Take a = 0 if ¢, (z) has no nonnegative
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integer zero, else take a = max{z € N: ¢,(z) =0} + 1.

Let’s sum up the complete algorithm in

Algorithm 4.4.9 (PolyABP) by Sergei Abramov, Manuel Bronstein and
Marko Petkovsek
INPUT: Ly = f with

e L=3"_,qiA® where q; € Klz]
® q0,qr #0
o f €Kl
OUTPUT: The general polynomial solution over K of Ly = f
BEGIN
IF ¢,(x) has no nonnegative integer zero

THEN a :=0
ELSE a :=max{z € N: ¢,(z) =0} +1

d = max{degq; |0 <k <7}

b:=max{degqy — k[0 <k <r}

FOR i € {—-d,—d+1,...,r} DO compute a;(n) by (4.9)
N :=max({z € N: ay(z) =0} U {degf —b,—b—1})

IF f = 0 THEN

Initialize V and extend it by (4.11)

Set up the linear system of equations (4.13) and compute the general
solution g, ..., Ay

r N ) (z—a
Y= Zj:O )‘J En:O vgj)( n )
ELSE
Initialize V and g and extend both by (4.11) and (4.12), respectively

Set up the linear system of equations (4.14) and compute the general
solution Aq, ..., Ay

=N 00 (7 + X N TN ol (779
Return y
END
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Remark 4.4.10 Remarks on Algorithm 4.4.9

o Unlike to PolyDelta and PolyTau the linear system to solve is not in tri-
angular form.

e One problem of PolyDelta and PolyTau also appears in PolyABP: we have
no guarantee that the linear system has a solution, though a degree bound
N > 0 has been found.

4.5 Solving by Interpolation Techniques

4.5.1 Using Lagrange Interpolation

In [Bar99] Moulay Barkatou presented a method how to reduce the number of
variables in the final linear system using Lagrange interpolation - however, the
method is only described for matrix difference equations?® of order 1: He was
able to reduce the number of unknown from st(N + 1) to st (where s and t are
the dimensions of the matrices and N is the degree bound). Basing ourselves on
Barkatou’s interpolation idea we were able to develop an analogous algorithm
for scalar difference equations of order n. This algorithm needs to solve a linear
system of equations with n instead of NV + 1 unknowns which is just the same
as in PolyABP (Algorithm 4.4.9).

The main idea comes from Langrange’s interpolation formula used on the
points a,a + 1,...,a + N, where N denotes the (already known) degree bound
and « is an (at the beginning) arbitrary element from K, thus we can represent
a polynomial solution y(z) (with degree N) in the form

y(z) = y(a)Lo(z) + y(a+1)Li(x) + ... + y(a + N)Ly(x) (4.15)

where

N .
L= [ =2 iefo1,..,N)
=o'

are the Lagrange polynomials for the points a,a + 1,...,a + N.
Hence, in order to find y(x) it suffices to compute y(a),y(a + 1), ...,y(a + N).
The key step is now to set up y(a),...,y(a +n — 1) as n unknown coefficients
Co, ---, Cn—1 and to compute the remaining y(a+n), ..., y(a+N) via the difference
equation (used in forward direction). At this point it must be guaranteed that
this is always possible meaning that no pole in the leading coefficient appear,
but this can achieved by the choice of a (see also the choice of a at the end
of the previous section): The leading coefficient may not vanish at the points
a,a+1,...,a+N—1.
In this way all y(a +14) become a linear combination of co, ..., ¢,—1 and equation
(4.15) becomes a polynomial with n instead of N + 1 unknowns.

2see for example (5.3) on page 63
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The resulting algorithm is straightforward:

Algorithm 4.5.1 (Lagrange interpolation) by Christian Weizlbaumer resp.
Moulay Barkatou
INPUT: Ly = f with

o L=3""pi- 7" where p, € K[z]
® po,pn # 0
o f €K
o The degree bound N for the polynomial solution
OUTPUT: The general polynomial solution over K of Ly = f
BEGIN
Choose « such that p,(x) is not equal to zero for z = a, a+1,...,a+N—1
FOR i€ {0,1,...,n—1} DO y(la+1i) :=¢

FOR i € {n,n+1,..,N} DO compute y(a + i) using the recurrence
relation Ly = f (in the forward direction)

FOR i € {0,1,.., N} DO Li(2) := [, j.; &5

Plug y(z) := y(a)Lo(z) +y(a+1)Li(z)+ ... +y(a+ N)Ly(z) into Ly = f
and find the general solution (cg, -..,¢,_1) of the resulting linear system

Return y(x)
END

Remark 4.5.2 Remarks on Algorithm 4.5.1

o Just like PolyABP Algorithm 4.5.1 yields a linear system with n = order (L)
unknowns which is in general not in triangular form. However, the linear
system of Algorithm 4.5.1 consists of N + degree(L) equations, whereas
PolyABP has to deal with n + degree(L).

e The Lagrange-method can be easily used as an alternative to the standard
method of undetermined coefficients in PolyDelta and PolyTau if N turns
out to be (much) greater than n = order(L). Testing shows that plugging
the y(x) into Ly = f is the crucial part of the algorithm, because the
necessary computation with the Lagrange polynomials becomes slow with
increasing degree (which is N, unfortunately)!
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4.5.2 Using Newton Interpolation

As mentioned one problem of Lagrange polynomials is their degree which is N
for each polynomial. This motivates the use of Newton’s interpolation formula
whose NV + 1 polynomials have the degrees 0,1, ..., N:

v =3 (7378

k=0

Note that A*y(a) means AFy(x)|,.

Just like in the previous subsection we only need to know y(a), Ay(a), ..., ANV y(a)
to get - after solving a system of linear equations - the solution y(z). Again,
we set up y(a), Ay(a),..., A" 1y(a) as n unknowns and want to compute the
remaining AFy(a) via the difference equation. This time, however, this is not
that straightforward!

We will present three possibilities:

Possibility 1 - Already Done
The first possibility was already described in Section 4.4: With the help of

equation (4.6) the difference equation could be rewritten into (4.10) containing
I;;(y) which were nothing else than our Afy(a).
Possibility 2 - Efficiency Problem

Suppose we have the following difference equation of order n with rational func-
tions coefficients:

A™(y) = an_1 A" y) 4+ ... + a1 A(y) + apy (4.16)

Hence, we can immediately compute A™y(a) by simply plugging « into (4.16).
In order to get an analogous equation for A"*1y(a) we apply the A-Operator
on (4.16), yielding

A"l y) = A (an_lA"_l(y) + .. +aAly) + aoy) =
= A(an—1A" ' (y)) + ... + A(a1A(y)) + A (aoy)

Remember Proposition 2.2.4 (g) where we had the product rule for the A-
Operator: A(fg) = A(f)g+ fA(g) + A(f)A(g) = A(f)g +7(9)A(g). Thus, we
can simplify the above equation to

A" y) = Alan—1)A" M (y) + .. + A1) A(y) + Alao)y +
+ 7(an-1)A™y) + ... + 7(a1) A%(y) + 7(ao) A(y)

In other words:

A (y) = by A" (y) + ... + b1 A(y) + boy (4.17)
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where b, = 7(an—1), bo = A(ap) and all other coefficients are given by by =
A(ayg) + 7(ag_1). With (4.17) we are now able to compute A"t 1ly(a); in an
analogous way all other A¥y(a) can be computed.

The drawback of this method may be the costly computation of the "new”
recurrences, as we have to compute some A(ax) with rational functions ay.

Possibility 3 - Optimal

The third possibility for computing all other A¥y(a) uses the following scheme
coming from the theory about Newton interpolation. Let’s write down the
scheme for N =4 and a = 0:

y(0)
> y(1)
Ay(0) > y(2)
> Ay(1) > y(3)
A?y(0) > Ay(2) > y(4)
> A?y(1) > Ay(3)
A3y(0) > A?y(2)
> Ay(1)
Ay(0)

The construction of this scheme is similar to the construction of the Pascal
triangle by using the (general) relation

Ary(a) + Ay (a) = Afy(a +1) (4.18)

This scheme can now be used for the computation of the AFy(a) which are
always contained in the first column of the scheme®. We will demonstrate the
idea for N = 4 and o = 0 having a difference equation of order 2: Thus, we have
at the beginning y(0) = ¢ and Ay(0) = ¢1. By using the difference equation in
the form (4.16) we can compute A%y(0). Now we can use the scheme to compute
y(1) = y(0) + Ay(0) and Ay(1) = Ay(0) + A2y(0). With these two values we
can again use the difference equation in order to compute A2y(1). Using the
scheme we get A%y(0) = A2y(1) — A2?y(0), and so on ...

The choice of a has to be made as ”usual”: The denominators of equation (4.16)
may not vanish at the points o, + 1, ...

In the following algorithm the choice of a will be the same as the choice of a in
PolyABP.

Let’s sum up our method in

Algorithm 4.5.3 (Newton interpolation) by Christian Weizlbaumer
INPUT: Ly = f with

3The values needed for Lagrange interpolation y(0),y(1),... are also contained in the
scheme.
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o L=3"0qr AF where g4 € K[z]

® q,qn #0

o f€Kz]

o The degree bound N for the polynomial solution
OUTPUT: The general polynomial solution over K of Ly = f

BEGIN
IF g,(z) has no nonnegative integer zero
THEN a:=0
ELSE o :=max{z € N: ¢,(z) =0} +1
FOR i € {0,1,...,n— 1} DO Aly(a) :=¢;

Compute A™y(a) using the recurrence relation Ly = f (in the forward
direction)

FOR j € {1,2,..,N —n} DO
FOR i € {0,1,...,n—1} DO

Aly(a+j) =Aly(a+j—1) + A y(a +j—1)

Compute A™y(a + j) using the recurrence relation Ly = f (in the
forward direction)

FOR i€ {1,2,..,5} DO
Amtiy(a+j5—i) = A" ly(a+j—i+1) — A" ly(a+ 5 —4)
Plug y(z) = y(a) (waa) + Ay(@) (°7%) + ... + ANy(a)(°y%) into Ly = f
and find the general solution (cg, ..., c,—1) of the resulting linear system

Return y(x)
END

Remark 4.5.4 Remarks on Algorithm 4.5.3

o Just like Algorithm 4.5.1 Algorithm 4.5.3 yields a linear system with n =
order(L) unknowns and N + degree(L) equations which is in general not
in triangular form.

o Algorithm 4.5.8 is another alternative to the standard method of undeter-
mined coefficients used in PolyDelta and PolyTau as long as N is (much)
greater than n = order(L).
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4.6 Comparing the Bounds

In this section we will compare the degree bounds computed by PolyDelta,
PolyTau and PolyABP. Clearly, this includes the comparison of all degree poly-
nomials a(z), D(z) and ap(z) which has beem done in [PeWe00] for the first
time.

Let’s shortly recall these bounds and polynomials: We had

L=Y pe(@)m" =) g(@)At
k=0 k=0
n(a) = L0 (aw) ren a0 =3 (,)ne.
i=k 1=k

b= 022X, (deg gi(z) — k)

d= d = d
o2, do8pk(r) = mpz, degan(a)
d .
pi(z) = Zpk,jxj
=0

d
4 (x) =Y g0’
=0
(a) PolyDelta: We proved that

degy < max{M,deg f —b,—b—1}

where M is the maximal integer root of the degree polynomial
n .
a(z) = Z @bt 2
j=0
(b) PolyTau: For 0 < j < s define
bES) = Zijpi,d—s+j, Ds(z) =
i=0

and let
so =min{s > 0: Dg(z) # 0}.

Then
degy < max{M,deg f + so — d}

where M is the maximal integer root of the degree polynomial

D(2) = Dy, (2) = Z (z) B,

=0 M
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(c) PolyABP: We showed that
degy < max{M,deg f —b,—b—1}
where M is the maximal integer root of the degree polynomial

ap(z) = i i (z * b) (bik) A g (0).

k=0 j=btk N 7

We will make use of the following identity (which is also very useful for some
computations in PolyABP):

n

Amp(z) = 3 (~1)* (Z) px+k) forneN

k=0
where p(z) is an arbitrary polynomial.
Theorem 4.6.1 Using the notations above, we have:
(a) so+b=d
(b) (z) = D(2)

Proof: Using (4.1) we read off that

n

pi = 20} )@

i=k
Therefore
= S Wiy = 30 (i =
k=0 k=0 i=k
n i . i ) n o
- Z Gid—sti p_(=1)7 (k) = Z Gi,d—s+; AT |g=0 =
1=0 k=0 i=0

J
= Z qi,dfs+jA1$J |z:0-
i=0
Suppose that s <d —b,then d—s+ 35> b+ 7 > b+ > degg; by definition of
b, hence ¢; 4—s+; =0 for 0 <4 < j. So b;s) =0for0<j<sand Ds(2) =0. It
follows that sg > d — b.
On the other hand,

j

d—b i 4

b )=§ IRERYANE 2 PR
1=0
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Ifi¢ < jthen b+ j > b+ > degg; by definition of b, hence g;,4+; = 0 for
0<i<jandso
d—b i ,
B = g N2 om0 = 51 g

Therefore
b s b d—b .
Dy_p(2) = <],>b§. = <j>j!qj,b+j =Y @it = alz) 0.
7=0 7=0 7=0

Tt follows that so = d — b and D(z) = a(z) as claimed.

Remark 4.6.2 Theorem 4.6.1 simply says that Abramov’s algorithm PolyDelta
and Petkovsek’s PolyTau are equivalent up to the additional —b—1 in PolyDelta.

Theorem 4.6.3 Using the notations above, we have:

(z+b)t-az) b>0
ab(2)={ L - a(2) b<0

Proof: If j > b+ k then, as b > deg qr — k, we have j > deg g, and consequently
AJ g (0) = 0. Tt follows that

n d . n
z+0b Ji ; z+0b
we = XY (1) va0 =3 (51 a0 -
k=0 j=b+k k=0
"~ (2+b = )
- ! _ bk
;; (b n k) (b+ k) gr,b+k ;%,H—k(z +b)

Let’s consider both cases:
o If b> 0 then (2 + b)’T* = (2 4+ b)22E and ay(2) = (2 + b)t - a(2)

o If b < 0 then (z + b)2*E = L 2k and ab(z)zé-a(z)

2=b
|

Corollary 4.6.4 The degree polynomials a(z), D(2) and ap(z) coincide if and
only if b = 0. PolyTau and PolyDelta are equivalent. The degree bounds com-
puted by PolyTau, PolyDelta and PolyABP are the same.

Proof: Comparing PolyDelta and PolyTau with respect Theorem 4.6.1 to we
have to show that the —b—1 is not necessary at all and can be discarded. This is
clear when b > 0. When b < 0, then Theorem 4.6.3 shows that a(z) is divisible
by 2=% with roots 0,1, ..., —b — 1, implying that M > —b— 1.

To see that PolyDelta/PolyTau and PolyABP compute the same degree bound,
observe that for b > 0 the maximum integer root of (z + b)® is —1 and for b < 0
the maximum integer root of z=% is —b — 1.
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Corollary 4.6.5 To have a degree polynomial P(z) of least degree we can take
[ az) b>0,
P(2) _{ 213~a(z) b<O0.
Then we have the bound

max{M,deg f — b} b>0
degyﬁ{ max{M,deg f —b, —b—1} b<0

where M is the mazimal integer root of P(z).

Remark 4.6.6 Suppose we have the difference equation Ly = 0 and computed
b < 0, then it follows that go = q1 = ... = q_p_1 = 0, thus we can write

L= zn: qkAk

k=—b

This implies that

y(@) =co+ 1o+ ... +cpz 07t

is a solution (of dimension —b) of Ly = 0.
Let’s conclude with a comparison of PolyDelta/PolyTau to PolyABP:

e General differences

PolyDelta | PolyTau | PolyABP
L given in terms of A T A
Used power base " " )

e PolyDelta/PolyTau using the method of undetermined coefficients

PolyDelta/PolyTau PolyABP
Preliminary computations € ai, AI(f)
Unknowns in linear system N+1 order(L)
Equations in linear system N+d order(L) 4+ d
Type of linear system triangular arbitrary

e PolyDelta/PolyTau using an interpolation method (Lagrange or Newton)

PolyDelta/PolyTau PolyABP
Preliminary computations | expanding polynomials a;, A (f)

Unknowns in linear system order(L) order(L)
Equations in linear system N+d order(L) +d
Type of linear system arbitrary arbitrary

Thus, we can state the following: As soon as N is (much) greater than
order(L), the method of undetermined coefficients should be avoided. However,
a careful implementation concerning the preliminary computations in PolyABP
respectively of the interpolation methods is required (and most important).
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4.7 Examples and Comparison

Example 4.7.1 Given Ly = 0, with L = (4z + 33)7% + 4(x — 16)7 — (8¢ — 7),
thus we have

(dz +33)y(x +2) +4(x — 16)y(z + 1) — (8x — T)y(x) =0
with the polynomial solution
y(x) =c- (2* +2x +3)

Each of the algorithms compute b = 0, the degree polynomial 12(z — 2) and the
(sharp) degree bound 2.

Example 4.7.2 Given Ly = f, with L = (zx + 1)7? =227+ 2% and f =2 — 1,
thus we have

(z+ Dy(z+2) —2®y(z + 1) + 2?y(z) =2 — 1
with the polynomial solution
y(z) =2x -5
Each of the algorithms compute the degree polynomial z — 1 and the (sharp)

degree bound N = 1. Note that the corresponding homogeneous equation has
no solution, though the degree bound N is still 1.

Example 4.7.3 Given Ly = f, with L = (x + 1)7> =27 —x and f = az® +
bx? + cx + d, where a,b,c,d are indeterminates, thus we have

(z+ Dy(z +2) = 2y(z + 1) —zy(z) = az® + bz’ + cx + d

with the polynomial solution

() = Oyp 4 T120450 5 60— 200+ 15c 6ot 10— 15d
YW =x 15 15 15

Each of the algorithms compute the degree polynomial 2z — 1, which has no
integer root. The (sharp) degree bound is obtained by N = deg f — b = deg f.

The next example shows that it is impossible to bound the degree of poly-
nomial solutions by the order and degree of the difference equations:
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Example 4.7.4 Given Ly =0, with L = z7 — (x + k) and k € N, thus we have
zy(z+1) — (= + k)y(z) =0

with the solution

yz)=c-z@+1)..(z+k—-1)=c-aF

Each of the algorithms compute the degree polynomial z — k and the degree
bound k. This is in spite of having order(L) = 1 and degree(L) = 1. Note that
using the method of undetermined coefficients we have to solve a system with
k equations and k + 1 unknowns and using PolyABP the remaining system has
dimension 1.

In the next examples we illustrate the possible differences between the degree
polynomials a(z) = D(z) and ap(z) using difference operators of the form L =
P A" 4+ A™:

Example 4.7.5 Given Ly = f, with L = A™ with a positive integer n and an
arbitrary polynomial f, thus we have e.g. forn =3

ylx+3) =3y +2)+3y(z+1)—y(z) = f
which has the solution
y(x) = co + 1T + oo + o1 2" + yp(w)

where y,(x) denotes a partial (polynomial) solution of Ly = f (which exists for
every nonzero f) and which has degree deg f + n.

We observe the following (note that b = —n):

e D(z)=2(z—-1)(2—2)...(z —n+ 1), which has the maximum integer root
n—1.
e a;3(z) =1, which has no roots.
In the inhomogeneous case, the degree bound N is always equal to deg f + n,
which is sharp. In the homogeneous case, we have N = n — 1, which is also

sharp. Note that on the one hand this is equal to the maximum integer root of
a(z) = D(z) and on the other hand n —1 = —b—1.

Example 4.7.6 Given Ly = f, with L = z* A™ +1 with positive integers k and
n and an arbitrary polynomial f, thus we have e.g. forn =3
Fy(z +3) — 32Fy(z + 2) + 32Py(x + 1) — (2" + V)y(2) = f

which has exactly the polynomial solution y = f if deg f < n (resp. no solution
for f =0). If deg f > n, then there exists an (in advance unknown) solution if
k <n and there may be a solution if k > n.
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We observe the following - note that b = max{k — n,0}:

e If £ > n, then

a(z)=D(z) = (z=n+1)-..-(z=1)-2
a(z) = (z—=n4+1)-..-(z=1)-2-(z4+1)-...-(z+k—n)
which have the maximum integer root n — 1.

e If k = n, then all degree polynomials are equal and of degree n.

o If k < n, then all degree polynomials are 1.
Furthermore, the computed degree bounds NV are of interest:

o If degf < n and k < n, then N = deg f. In this case the bound N is
sharp, because we have the solution y = f.

o If deg f < n and k > n, then N =n — 1. In this case N is really a bound,
as soon as deg f #n — 1.

e If deg f > n and k < n, then N = deg f. In this case the bound N is also
sharp, that means the difference equation has a solution of degree deg f.

o If deg f > n and k > n, then N = max{n —1,deg f —n+ k}. In this case,
the bound N is sharp if there exists a solution. However, for an ” arbitrary”
f we usually have no solution. This is more or less the problem case: It
may be that we have to solve a huge system of equations which has at the
end no (or only the trivial) solution.

Example 4.7.7 Given Ly = f, with L = ™A™ + A™ with positive integers n
and m and an arbitrary polynomial f, thus we have e.g. for n =2 and m = 3:

y(x+3)+ (2?2 = 3y(z +2) — (222 = y(z + 1) + (2 — Vy(z) = f
We observe the following - note that b = 0:
a(z) =D()=ap(z) =2(z = 1)(z = 2)...(z —n+1)

which is totally independent from m and that N = max{n—1,deg f}. Moreover
in the homogeneous case we have

o If m < n, then N = n — 1, however the general polynomial solution is
y(z) = co+ 12 + ... + cp_12™ ! which is of lower degree.

e If m > n, then N = n — 1, which is sharp because the general polynomial
solution is given by y(z) = co + 12 + ... + c_12™ L.

Looking at the inhomogeneous case we have
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e If m > deg f > n, then a solution y(z) exists which is of the form y(z) =
co +az + ... + 12" + yp(x), where degy,(z) = deg f. Thus, in this
case N is sharp.

e If n > m + deg f, then a solution y(x) exists which is of the form y(z) =
co+ Az + ...+ cm_12™ ! +y,(z), where degy,(xz) = m + deg f. Thus, in
this case NV is sharp if and only if n — 1 =m + deg f.

e For all other possibilities we have in general (i.e. for ”arbitrary” f) no
solution, in spite of having N = max{n — 1,deg f}.
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Chapter 5

Rational Solutions

In this chapter we will present algorithms which compute all rational solutions
of a difference equation. The common idea of all these algorithm can be roughly
formulated by:

Given the difference equation Ly = f, one can compute all rational solutions y
by:

1. Find a polynomial (or rational function) U(x) such such that each rational

solution y(z) can be written in a form y(z) = % where N(z) is a

polynomial.

2. Substitute y(z) := IZ]((?) inLy=f
3. Use an algorithm for finding all polynomial solutions z(z) of the resulting

system which yields all rational solutions é(“;)).

Obviously, the first step is the crucial one!

5.1 The Universal Denominator By Abramov

Problem 5.1.1 Given the difference equation Ly = f, find a polynomial u(x)
(universal denominator) such that u(zx) is divisible by the denominator of any
(reduced) rational solution of Ly = f, where:

o =3 opr(z) 7

o pi € Klz] (if pr € K(z), then we will multiply the entire equation with the
denominator of pi)

.pn7£07p07£0

o feKz] (if f € Kz), then we will multiply the entire equation with the
denominator of f)

59
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Sergei Abramov’s universal denominator can be computed/implemented
very simply, the theoretical background, however, is more challenging:

Algorithm 5.1.2 (Universal Denominator) by Sergei Abramov
INPUT: Ly = f with

o L=3_opk- " where py € Kz]
® Do, Pn 7£ 0
o f€Kz]

OUTPUT: A polynomial u(x) such that every rational solution y(z) of Ly = f
can be written in the form y(z) = zi(%, where z(x) is a polynomial.

BEGIN
A@) = pulz — n)
B(z) := po(z)
u(z) =1

Compute the largest nonnegative integer N such that A(z) and B(z+ N)
have a nontrivial common divisor. If no such N exists, set N := —1

FOR i:=N DOWN TO 0 DO
d(x) := ged(A(x), B(z + 1))

A(z) := 44
B(z) B(z)

END

Remark 5.1.3 Remarks on Algorithm 5.1.2

e For example, N can be computed as the largest nonnegative integer root of
Res, (A(x), B(x+m)). A more effective method is presented in [MaWr94].

e Note that the loop really goes from N down to 0. Though in most exam-
ples also the loop "FOR i:=0 TO N DO” can be used (which often yields
universal denominators of lower degree!), there exists examples for which
this loop calculates a wrong result. See Example 5.5.5.

e An observation from practice: If there exists several integers Ny such
that A(x) and B(x + Ny) have a nontrivial common divisor (resp. if
Res, (A(z), B(x + m)) has several nonnegative roots), then the algorithm
tends to compute - of course - correct but rather rough universal denomi-
nators.
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e A MATHEMATICA-version of Algorithm 5.1.2 (resp. of Algorithm 5.1.11)
over Q and C is available at the RISC-Homepage.

In the following we will give a proof of the correctness of the algorithm
dealing with the difference equation

Pr()y(z + 1) + ... + po(x)y(z) = f(z) (5.1)

where p;, f € K[z] and po, p, # 0.

The proof given is (completely) different to Abramov’s proof in [Abr95a]
(which is in fact very technical) and uses ideas from [Bar99] and [Khm99] to-
gether with Paule’s gff-concept (greatest factorial factorization). We will first
prove some rather simple but fundamental lemmas which helps to prove a the-
orem giving a (first) explicit formula for the (universal) denominator of the
rational solution of (5.1). Afterwards we show that this denominator is com-
puted by Abramov’s algorithm.

Lemma 5.1.4 Let y(z) be a rational solution of (5.1) and let xo be a pole of
order u of y(x), then:

(a) If o + 1,...,20 + n are no poles of y(z), then (x — zo)* divides po(x)
(b) If xg — 1,...,20 — n are no poles of y(z), then (x — xo)* divides p,(x —n)

(¢c) If ro—1,...,20—n and zo+1,...,20+n are no poles of y(x), then (x—xp)H
divides ged(po(z), prn(z — n))

Proof: In order to prove (a) look at (5.1) in the form

po(z)y(z) = f(2) — (P1(@)y(z + 1) + ... + pu(@)y(z +n))

By assumption there is no pole at zo on the right hand side, hence po(z)y(x)
has no pole at g, too, thus (x —x)* divides po(x). Statement (b) can be proved
analogously, (c) follows by combining (a) and (b).

Let’s look at the poles of a solution y(x) of (5.1) modulo the integers Z:
Obviously y(x) can have (finitely many) poles of the form zo + Z, then the
previous lemma implies that

e the maximal pole from x¢ + Z is a root of po(x)
e the minimal pole from z¢ + Z is a root of p,(z — n)
In other words, defining

Rs(z) ={z€p+Z|q(x) =0} wherepeK,qée Klz]

as the set of roots (over K) modulo Z of a polynomial ¢(z) we have proved the
following:
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Lemma 5.1.5 Let y(z) be a rational solution of (5.1) having the denominator
s(x), let p € K (resp. p € K/Z) and let R? ) #0, then

s(z

(b) minR? ) € R?

P (T—n)

(

As a consequence we get

Lemma 5.1.6 Let y(x) be a rational solution of (5.1) having the denominator
s(z) and let p € K (resp. p € K/Z), then

(a) IfRY ()R

7o (2) =0, then s(x) has no root of the form p+k for k € Z.

n (T—n)

(b) If Rgo(m) N Rg"(w_n) # 0 and maXRgO(w) < min R?

o (z—n)? ThEN s(x) has
no root of the form p+k for k € Z.

(¢) s(x) can only have roots from the set given by

U {minRzn(z_n), e maxRﬁOu)}.
pEK/Z

Proof: Clear!
|

Parts (b) and (c¢) of the last lemma give rise to the following definition having
its roots in [Abr71] respectively in [MaWr94]:

Definition 5.1.7 The dispersion set of a pair of polynomials, f(x) and g(x),
s given by

DS(f(z),9(x)) ={a € N| degged(f(z + a),g(z)) > 0}
If DS(f(x),g(x)) # 0, then the dispersion of f(z) and g(x) is defined by

dis(f(), g(z)) = max{a € N| degged(f(z + a),g(z)) > 0}

It should be mentioned that e.g. in [MaWr94] the dispersion is set to 0, if the
corresponding dispersion set is empty.

Obviously

/4

dis(po(z), pn(z —n)) = max{maxR @)
2 ol@

—minR> .}

Thus we have:

Corollary 5.1.8 If DS(po(z),prn(x —n)) = 0, then the denominator of a ratio-
nal solution y(x) of (5.1) is simply 1, i.e. each rational solution is a polynomial
solution.
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Now let’s look at the case N := dis(po(x),pn(x — n)) > 0. The following
theorem which can be found in a generalized form in [Bar99] already gives an
explicit formula for Abramov’s universal denominator:

Theorem 5.1.9 Let an equation of the form (5.1) be given and let N :=
dis(po (), pn(z —n)) > 0, then

N N
) == ged (Hpo(x +14), [[ pn(z —n - i))
=0 =0

is multiple of the denominator of any rational solution of (5.1).

Proof: Let’s rewrite (5.1) in the form

f@) = (pna(@)y(@ +n—1) + ... + po(2)y(2))

yir = pn(x)

(5.2)

Carrying out the shifts x -+ x —1,...,x — z — N yields

fla=1) =Y pilz—Dyl@+35—1)

ylx+n-1) on(e—1)

fl@=N) =Y pj(z = N)y(z+j - N)
pn(x_N)

Now we can substitute the expression for y(z +n — 1) in (5.2), then substitute
the expression for y(z +n — 2) and so on. What we get is an expression of the

form L
n—1 ~ .
Zj:o pj(x)y(x +J5—N)
Hivzo pn(x - 7’)
By the definition of N and Lemma 5.1.6 the poles of y(z + n) differ from the

poles of y(x + n — 1 — N),...,y(x — N). Therefore the poles of y(z) must be
determined by the product of the p,(x — i), thus (let s(z) be the denominator

of y(z))

y(z+n—N)

ylx +n) = with p;(z) € Kz]

s(x +n) |Hpnx—z & s(x |Hpnx—n—z
i=0

Analogously, we can prove that

N
2) | [] o +1)
1=0

and the statement follows.
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Using Paule’s gff-concept, we get from the previous theorem (w.l.0.g we may as-
sume that pg and p,, are resp. have been made monic; this will merely eliminate
the constant factor from u(z))

u(z) = ged (gff(l, e L,po(z + N)),gff(1, ..., 1, pp(z — n)))
where po(z + N) and p,(xz — n) are at the (N+1)-th position.

We will now show that this u(z) is computed by Abramov’s Algorithm 5.1.2:
Let Ay (z) :== A(z) = pn(z —n) and By () := B(z) = po(z), then

u(z) = ged (gff(l, ..1,Bn(z + N)),gff(1, ..., 1,AN(x)))

Furthermore, let (see Abramov’s algorithm)

e di(x) := gcd(A;(z), Bi(x + 1)) fori=N,N —1...,0

o A 1(z)= d;‘((;‘)) fori=N,N—1.,1

¢ Bii(2) = B for i = N,N —1..,1

then Abramov’s algorithm returns
N i
u(@) = [T [] die - )
=0 j=0
or written in gff-form
u(z) = gff(do(2), ..., dw (z))

Note that in the following lines we will write an extra 1 at the (N-1)-th
position in the gff in order to avoid ambiguity:

u(z) = ged (gff(l, 1,1, By (z + N)), gfi(1, ..., 1, l,AN(x))> -
By(z+ N) An ()

= ged (gff(l, 11, NdNWdN(x)),gff(l, 11, ]]:—dN(x))> =

= ged (gff(l, 1,1, By_1(z + N)), gff(1, ..., 1, l,AN_l(x))> -dy (z)XEL

Because ged(An_1(z), Bn_1(z + N)) = 1 (by the definition of N), we also
have ged(Ay_1(z — i), By_1(xz + N)) = 1 for all 4+ € N. This implies that
ged(An_1 ()Xt By_1(z + N)) = 1. Thus, we do not need the By_;(z + N)
and we get

ged (gff(l, 1,1, By_1(z + N)), gff(1, .., 1, 1,AN,1(x))) =
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= ged (gff(l, 1, By_i(z+ N —1),1), (1, .., 1, 1,AN_1(x)))

Because ged(Ay_1(z — N),By_1(z)) = 1 (by the definition of N), we also
have gcd(Ay_1(x — N),By_1(x +4)) = 1 for all ¢ € N. This implies that
ged(Ay_1(2), By_1(z + N)X) = 1. Thus, we do not need the Ay _;(z) and we
get

ged (gff(l, 1, Byi(z+ N —1),1),gf(1, ... 1, l,AN_l(m))) =

= ged (gff(l, o1, By_y(z + N =1),1),8f(1, ..., 1, An_1 (2), 1))
All in all, we showed that

u(z) = ged (gff(l, 1,1, By (z + N)), gff(1, ..., 1, l,AN(x))) -

= ged (gff(l, w1, By_1(x+ N — 1),dN(x)),gﬁ(1, ey 1,AN_1(a7),dN(:v)))
By induction we finally get

u(z) = gcd(gff(do(x),...,dN(x)),gff(do(x),...,dN(x))):
= gff(do(),...,dn ()

which completes the proof.

Remark 5.1.10 Some remarks on the proof:

e Observe that in each reduction step - we explicitly showed the first - we
extract the "longest chain” meaning the falling factorial of maximal length.
Hence, the gff-conditions from Definition 2.2.8 automatically hold.

e It would have been possible to do the gif-part of the proof without the gff-
concept using products like in Theorem 5.1.9. However, the gff prevents
us from beginning from the wrong side: Theoretically, one could also start
from 0 instead of N, but an analogous argumentation as we used to throw
out the By_1(z+ N) and the Ay_1(z) would not be correct in general. In
fact, this is the reason why the ”alternative” loop in Abramov’s algorithm
"FOR i:=0 TO N DO’ does not always compute the correct result.

o A generalization of Theorem 5.1.9 is given in [Bar99] dealing with linear
matrix difference equations (of order 1)

7(Y)-A—B-Y=F (5.3)

where A € GL,(K[z]), B € GL,,,(K[z]) and F and Y are n X m matrices
over Klz]. The resulting algorithm is - as expected - the same as Abramov’s
one, only the input polynomials A(x) := 771(det A) and B(x) := det B
are different. It should be mentioned that the case m = 1 is already con-
tained in [AbBa98], however, the approach used in [Bar99] is not only
more general but also less technical.
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o We will see that the method used for proving Theorem 5.1.9 is also used
i Lemma 5.2.7 on page 69 in the next section.

Improvements

Simplifying the loop Taking a closer look at Algorithm 5.1.2 one immedi-
ately notices that it is not necessary to do the complete loop "FOR i:=N DOWN
TO 0DO”: One only has to take each integer i such that A(x) and B(z+1) have
a nontrivial common divisor; in other words one has to compute the dispersion
set of B(z) and A(z). As mentioned before it is important to use the larger
integers first.

gcd-Improvement Consider the following difference equation:
(z+2)-ylr+2)—2z+1)-yzr+1)+z-ylx)=0

Doing the substitution y(z) := Z(z—z) looks useful, because (after canceling com-
mon factors) we get

2(x+2)—2z2(x+1)+2(x) =0

as the (simple) difference equation for z(x) which has the (in this case even
polynomial) solution ¢z + c2. Therefore y(x) = ¢1 + 2.

Obviously, this ”substitution-trick” can be transformed into a method, by check-
ing whether gcd(pp(z —n),...,p1(x — 1),po(x)) is nontrivial! In section 5.3 we
will see that this improvement (which appeared in [AbBa98] for the first time)
can really be essential.

After these both improvements for Abramov’s algorithm, we will describe
a further improvement which can be used before the search for the universal
denominator. Although this criterion will turn out to be quite simple, it has
not appeared in literature up to now:

Fast negative criterion for homogeneous equations First, remember
the general algorithm for finding rational solutions of linear difference equations
at the very beginning of the section: In the second step we have to do the

substitution y(z) := 28 in Ly = f = 0, that means:

Ly = pn(z)y(z +n) + ... + po(x)y(z) =0
changes to
Lz = pu(@)z(x +n) + ... + po(x)z(z) =0

Second, think back to Petkovsek’s algorithm for finding polynomial solutions,
where we derived the necessary condition (4.3) for the existence of a polynomial
solution: The sum of the coefficients of 2¢ of p;(x) (where d = degree(L)) has
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to vanish.

Now, observe that
n

pi(z) =pix)- [ uwl@+)
J=0,j#1
Hence, looking at the leading coefficients we have (note that the leading coeffi-
cient of u(z) is the same as the leading coefficient of u(x + 7))

By g = Pia - le(u(@))"

Consequently,
n n
D2 Pia=0&) bg=0
=0 =0

where d = degree(L) and d = degree(L). Thus, if condition (4.3) is not fulfilled,
then we cannot have a rational solution, either.

Let’s sum up all facts and write down the improved algorithm:

Algorithm 5.1.11 (Universal Denominator) by Sergei Abramov
INPUT: Ly = § with

o L=3 opk-T" where p; € Kz]
® po,pn 70
o e Kz]

OUTPUT: A polynomial u(x) such that every rational solution y(x) of Ly = f
can be written in the form y(zx) = zgg , where z(x) is a polynomial.

BEGIN

g() == ged(pp(z —n), ..., pr(z — 1), po(w))

Compute the dispersion set DS := DS(B(z), A(z))
FOR i € DS (in decreasing order) DO
di(z) := ged(A(z), B(z + 1))

A(z) == 2((?)
B(x) := dfif)i)

Return u(z) := g(z) - [[;c di(z)22
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END
¢

Let’s also write down the algorithm for determining the universal denomi-
nator of linear difference systems of order 1 developed in [AbBa98]:

Algorithm 5.1.12 (Matrix Universal Denominator) by Sergei Abramov

and Moulay Barkatou
INPUT: D1(y) + My = f, with

e D = diag(di(x),...,dn(x)) € Klz]™
e M € GL,(K[z]),

pii(x) ... pia(x)

Pt (@) .. Pun(a)

L f = (fla"'afn) € K[x]n

OUTPUT: A polynomial u(x) such that for every rational solution y(x) =
(y1(x), ..., yn(z)) of D1(y) + My = f u(x) is divisible by the denominator of
any of the rational functions y1(x), ..., yn(x).

BEGIN
FOR j € {1,2,...,n} DO
9j(x) == ged (dj(x — 1), p1j (@), p2j ()., prj ()
FOR i € {1,2,...,n} DO v;;(z) := v (@)

95 (z)
A=) ::1cm<d1($_1) . d"(mfl))

g1(z) 777 gn(z)

Compute B(z) as the least common multiple of the denominators of the
elements of M1

Compute the dispersion set DS := DS(B(z), A(x))
FOR i € DS (in decreasing order) DO
di(z) := GCD(A(zx), B(x + 1))

A(z) = 74
B(z) := dj?im—)i)

Return u(z) :=lem (g1 (), ..., gn(2)) - [1;c; di(z) L
END
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5.2 The Denominator Bound By van Hoeij

The denominator bound D(z) by Mark van Hoeij is nothing else than the uni-
versal denominator presented before with the only difference that D(z) need
not be a polynomial, but is allowed to be a rational function. As a consequence,
the degree bound for the numerator may be smaller.

As we are following [vH098], we will also switch from scalar equations to matrix
equations:

Definition 5.2.1 Given the (homogeneous) matriz difference equation 7(Y) =
AY, a vector D = (Dy,Ds,...,D,)T € C(z)" is called a denominator bound
if for each solution Y = (Y1,Ys,...,Y,)T € C(x)™ one has Y; = g for some
N, € Clz] where:

o A€ GL(Cx))

o A is defined like in Remark 2.3.3 for scalar equations (companion matriz)

Definition 5.2.2 Lety € C(z) and p € CU {0}, then we define the valuation
of y at p by vy(y) := inf{i | y; # 0}, when y is written asy = >, yi(x — p)* for
peCandy=73,yi% for p=oo.

Proposition 5.2.3 Some easy statements concerning the valuation of polyno-
mials and rational functions:

(a) vp(0) = oo for pe CU {oo}
(b) veo(q) = —deg(q) for q € Clz]

(c¢) If g(x) is a polynomial and p is finite, then vy(q) is the order of q(x) at
p, i.e. the highest power of x — p that divides q(x).

(d) If r = & with N, D € C[z], then vy(r) = v,(N) — v,(D) for p € CU {oo}
(e) If r = & with N € Clz] and D € C(z) then deg N = —voo(D) — oo (1)
(f) vp(32;mi) = min; vy(ry) for r; € Clx)

(9) vp([1;me) = 325 vp(ri) for i € Cla)

(h) 3 pecuioo} Vp(r) =0 for r € Cz)*

With the knowledge of valuations, we can solve our problem of finding a
denominator bound for a solution ¥ = (¥71,Ys,...,Y,,)T by determining lower
bounds for the valuations of the Y; at finite points.

Because rational functions can only have a finite number of poles it is natural
to start with the search for a finite set of points, such that for all other points
p which are not in this set the valuation is at least zero, i.e. no factor £ — p in
the denominator. Afterwards, we will take care of this finite set and look for
valuations bounds.
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Definition 5.2.4 Let A € GL,(C(x)) be the system matriz of the difference
equation 7(Y') = AY, then we define

S:={peC|det A(p) =0V A has a pole in p}

and
S:={peC|Ip1,p2€S:p—p1—1€NAps —peN}

Note: If A is a companion matriz then (after multiplying by the common de-
nominator to get polynomial coefficients py)

S ={peC|pisa root of po(z)pn(z)}

Looking at the definition of S, it makes sense to divide S and S into equiv-
alence classes with the help from the equivalence relation p ~ ¢ < p—q € Z:

S=1{J S, and 5= (J S,
peC/Z peC/Z
with

Sp = {¢eS|gep+Z}=5n{geClp-qeZ}
Sy = {g€p+Z|3Ip1,p2€S,:q—p1 —1ENAps —qg€eN}
Proposition 5.2.5 Easy properties concerning Sp, Sp, S and S:

(a) 1S,] =1= 5, = {}

(b) |Sp| > 1= S, = {min S, + 1,min S, + 2, ..., max S, }

(c) S is finite

(d) S is finite

Theorem 5.2.6 Let A and S be defined like in Definition 5.2.4 and let Y =
(Y1,Ys,...,Y,)T be an arbitrary rational solution, then:

Vp e C\S : v,(Y;) >0 for alli € {1,2,...,n}

Proof: Let p € C\S be arbitrary. Suppose, that v,(Y;) < 0 & Y; has a pole at
p. We consider two cases:

Case 1: p > max S: Because of the difference equation we have Y (p+1) =
A(p)Y (p). Thus, Y; has also a root at p+ 1, as A(p) is regular. Again,
Y(p+2)=Ap+1)Y(p+1). Thus, ¥; has also a root at p+2, as A(p+1)
is regular, etc. Therefore Y; would have infinitely many poles, which is
impossible for rational functions.

Case 2: p < minS: Analogously to case 1 with the difference equation in
the form Y(p—1) = A=Y (p—1)Y (p).
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Observe the similarity of the above theorem together with part (b) of the
previous proposition to Lemma 5.1.6 (c)!

Now, let p € S. We will derive bounds B;(p), such that v,(Y;) > Bi(p):
Take N € N such that p— N ¢ S, then

Y(p) = Ap—1)-Y(p)=A(p—1)-A@p-2)-Y(p—2) = ..
= Ap-1)-Ap—2) ... -A(p—N)-Y(P=N) =
T A) T2 (A) N (A) TN (V) =2 A TN ()

Lemma 5.2.7 Letp € S, N and Ay like above, and define B.(p) (the left hand
bound) as the minimum of the valuations at p of the entries in the i’th row of
An, then:

v, (Yi) > BL(p) for all solutions Y = (Y1,...,Yy) of 7(Y) = AY

Proof: Let Y be an arbitrary solution of 7(Y) = AY, then the entries of Y have
no poles at p— N, because p— N ¢ S < the entries of 7~V (Y) have no pole at p
< vp(T7V(Y)) > 0. Because Y = Ay -7~V (Y), we have that ¥; is nothing else
than the inner product of the i’th row of Ay with 7= (Y). Now, the statement
follows from Proposition 5.2.3 (f) and (g).

Analogously, we can define the righthand bound Bj(p) for a point p € S:
Take N € N such that p+ N ¢ S, then

Y(p)=A n(p) - Y(p+ N) where A_y := TN(AJ_Vl)

and B! (p) is defined as the minimum of the valuations at p in the i’th row of
A_p. Just like in Proposition 5.2.7, we can show that v,(Y;) > Bl (p). We
can now define our desired bounds B;(p) by B;(p) := max{B!(p), Bl (p)} Let’s
summarize all facts in

Algorithm 5.2.8 (Denominator Bound) by Mark van Hoeij
INPUT: 7(Y) = AY with

e Ae GL,(C(x)) (n xn difference system of order 1)
e A is a companion matriz for a n-th order scalar difference equation

OUTPUT: A vector D(x) = (Dy, ..., Dy,) with rational function entries D; such
that every rational solution y(z) = (Y1, -.-,yn) of T(Y) = AY can be written in

the form y;(x) = g—"i((%, where z;(x) are polynomials.

BEGIN
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S:={peC|detA(p) =0V A has a pole in p}
S:={peC|Ip1,p2€S:p—pm—1€ENAp, —peN}
FOR p € S DO

Take N; € N such that p— N; ¢ S, i.e. take N; > 1+ p—min S
Ay, =17 1A) - 772(A) - ... .7 N (A) (at p)

FOR i € {1,2,....,n} DO compute B!(p) as the minimum of the
valuations at p of the entries in the i’th row of Ay,

Take N, € N such that p+ N, ¢ S, i.e. take N, > 1 —p+max S
Ay, = A7 . 71(A7Y) - L N1 (A7Y) (at p)

FOR i € {1,2,..,n} DO compute B}(p) as the minimum of the
valuations at p of the entries in the i’th row of Ay,

FOR i € {1,2,...,n} DO B;(p) := max{B'(p), Bl (p)}

FOR Z S {1, 2, ,n} DO Di = Hpe§(x _p)—B1(p)
Return (Dy,...,Dy,)
END

Improvements

We can speed up the entire algorithm by the following consideration: Suppose
we have found B;(p) = 0 for an arbitrary p € S, then B;(p+1) >0ifp+1¢ S.
This can be seen by Y(p + 1) = A(p)Y (p) - the valuation at p of the right
hand side is at least 0. Hence, we can set B;(p + 1) = 0 and need not do the
computation for p + 1.

We can also use the gcd-Improvement described in section 5.1 on page 64.

Remark 5.2.9 Remarks on Algorithm 5.2.8

e Observe that in case of a companion matriz (if one started with an scalar
equation) the computation of A=1 is easy, because:

—1

0 1 0 0
0 1 0
= —ao —a =
0 0 0 1
—ap —air —a2 —Qnp-1
_a1 a2 _Gn-1 1
ao ag ao [24]
1 0 0 . 0

1
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o Of course, it is possible to vary the algorithm concerning the computation
of the bounds B;(p). One can for example compute either the left hand or
the right hand bound (take that bound, for which N (N; or N, ) is smaller,
because the matriz product will be smaller).

o Algorithm 5.2.8 can be easily extended for inhomogeneous equations: Sup-
pose we have

7(Y) =AY + Z where A € GL,(C(z)), Z € C(z)"

then we can transform this into the following homogeneous difference equa-

(T)-(4)(1)

o A MATHEMATICA-version of Algorithm 5.2.8 for scalar equations over
Q has been implemented by Azel Riese together with Marko Petkoviek and
is available at the RISC-Homepage.

As a conclusion we mention the following remarkable theorem:

Theorem 5.2.10 Let p € S. If all solutions of T(Y) = AY are rational, then
the left hand bound Bl(p) and the right hand bound Bl(p) are sharp. So these
bounds coincide in this case.

Proof: See [vH09§]

5.2.1 Improving The Scalar Case

Comparing van Hoeij’s method to the proof of Abramov’s algorithm we observe
that in the scalar case the algorithm is not opti_mal1 concerning S. Let K =C,
then by Lemma 5.1.6 (c) and the definition of S:

{minRZn(w_n), ...,maxRiom} = {minRZn(w) +n, ...,maXRgo(gc)}

is a subset of

Sp={min Ry 1), (@) T 1 MAXRY ) (0}

Let’s shortly explain the difference concerning ”+n” and ”+1”: In the scalar
case we have to deal with a companion matrix and the solution vector is given
by (y(x),y(x +1),...,y(z +n — 1)). Hence S, also contains the roots of the
denominators of y(z 4+ 1),y(z + 2), ...,y(z + n —1).

It should also be noted that in contrast to Abramov’s algorithm van Hoeij’s
algorithm requires root finding over C.

1See Example 5.3.9
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We will now present a variant of van Hoeij’s algorithm for the scalar case:
This algorithm (which appeared in [Khm99] for the first time) uses the complete
information about the structure of the denominator as well as avoids root finding
over C!

Observe that the following derivation is basically the same as the proof of
Theorem 5.1.9 - only the conclusion will be different:

Left hand bound We start with the (homogeneous) difference equation given
by

S pe(alya — ) = 0 (o) = - S 28y g
k=0

Let’s rewrite this in the form
n
y(@) = o (@)y(z — k) (5.4)
k=1

No we can do the shift z — z — 1 in (5.4) to get an equation for y(xz — 1). This
can be plugged into (5.4) an we obtain an equation of the kind

n+1
y(@) =Y o (@)y(z — k)
k=2

Carrying out also the shifts x - -2,z > 2 —3, ..., z = £ — N in (5.4) where
- as "usual” - N = dis(po(z), pn(z — n)) and doing the substitutions yields

N+n
y@) = Y aMV @y -k (5.5)
k=N+41

By the definition of N and Lemma 5.1.6 we know that the roots of the de-
nominator of y(z) are different from the roots of the denominators appearing
in y(x — (N +1)),...,y(x — (N + n)). Thus, these roots and their multiplici-
ties are determined by the coefficients ach)
(N)
k

, namely, the least common multiple

of the denominators of the a
denominator of y(z).

can be used as the left upper bound for the

Right hand bound Starting with the equation

n n

S pe@y(@+k) =06 y@) =Y 0 @)yl + k)

k=0 k=1
we obtain by an analogous calculation (in the other direction)

N+n

y@)= > (@) +k) (5.6)
E=N+1
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and the least common multiple of the denominators of the b,(CN) can be used as
the right upper bound for the denominator of y(x).
Taking the greatest common divisor of both bounds yields a (most probably
better) bound for the denominator of y(x).

This results in the following algorithm (we also use the gcd-improvement
described in section 5.1 on page 64):

Algorithm 5.2.11 (Denominator Bound for Scalar Equations) by Den-
nis Khmel’nov resp. Mark van Hoeij
INPUT: Ly = f with

o L=3 opk- 7" where p; € Kz]
® po,pn 70
o e Klz]

OUTPUT: A polynomial D(x) such that every rational solution y(x) of Ly = f

can be written in the form y(z) = f)((?), where z(x) is a polynomial.

BEGIN

g(z) == ged(pr(z — 1), ...,p1(z — 1), po(x))
N := dis(2e(@) pulz=n)y

g(z) > g(=)
Calculate equation (5.5) resp. the coefficients a,gN)

Dy (z) :=lem(den ag\z/szl, ...,den a%vﬁn)

Calculate equation (5.6) resp. the coefficients b,(gN)

Dg(z) :=lcm(den bSVszv .oy den bSVNJzn)

D(z) := g(z) - ged(DL(x), Dr(x))
Return D(z)
END

Remark 5.2.12 Remarks on Algorithm 5.2.11:

o Observe that Algorithm 5.2.8 (in the scalar case) and Algorithm 5.2.11 are
not equivalent, as the result of the latter is always a polynomial. Moreover,
note that Algorithm 5.2.11 differs from Algorithm 5.2.8 in that it does not
consider the possible roots of the denominator one by one, but analyzes all
possible roots simultaneously.
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o Comparing the derivation of Algorithm 5.2.11 to the proof of Theorem
5.1.9 it immediately follows that the denominator polynomial D(x) from
Algorithm 5.2.11 divides Abramov’s universal denominator u(x). How-
ever, van Hoeij’s denominator bound D (from Algorithm 5.2.8) does not
have this property in general.

In the following example section we will point out the differences between

all three presented algorithms for finding rational solutions of linear difference
equations (in the scalar case). Looking at the main ideas of all algorithms it is
rather obvious that on the one hand Abramov’s algorithm will be faster and on
the other hand van Hoeij’s approach (at least the improved variant for the scalar
case) will be more exact. In this context, it should be observed that Abramov’s
algorithm only uses the leading and trailing coefficient whereas the algorithms
using van Hoeij’s method take care of all coefficients!
Of course, the lower exactness of Abramovs’s method can cause a difference
equation (for the polynomial solution) which is of higher degree than the (often
optimal) difference equation resulting from van Hoeij’s method. Consequently,
the computing time for the following search for the polynomial solution has to
be taken into consideration, too.

5.3 Examples and Comparison

Some easy examples which cause no problems for all algorithms (Algorithm
5.1.11, Algorithm 5.2.8) and Algorithm 5.2.11, but already indicate some differ-
ences:

Example 5.3.1 Given Ly =0, with L = (z + 1)(2z + 1)7 — (x + 3)(2z — 1),
thus we have

(z+1D)Q2z+Dy(x+1)—(z+3)2z - )y(x) =0
with the general rational solution
. (z+1)(z+2)
2x — 1

The universal denominator by Abramov (and also the denominator polyno-
mial of Algorithm 5.2.11) is equal to 2z — 1 (already computed by the ged-

improvement), the denominator bound by van Hoeij is equal to %%

y(x) =c

Example 5.3.2 Given Ly = 0, with L = (4 + 33)7% + 4(x — 16)7 — (8x = 7),
thus we have

(dz +33)y(x +2) +4(x — 16)y(z + 1) — (8x — T)y(x) =0
with the general rational solution

y(x)=c- (2* + 22 +3)



5.3. EXAMPLES AND COMPARISON 7

All algorithms compute the sharp denominator 1.

Example 5.3.3 Given Ly = f, with L = (x +4)7% + (x + 3)72 — 27 + (2?2 — 1)
and f = 2, thus we have

(z+4y@+3) + (@ +3yw+2) —ay(x +1) + @ - Vy(@) = I i

with the general rational solution

1
2 —1

y(z) =

In this case the universal denominator is equal to (z — 1)z(x + 1) and the de-
nominator bound (and also the denominator polynomial of Algorithm 5.2.11) is
equal to (z — 1)(z +1).

Example 5.3.4 Given Ly = 0, with L = p3(z)7° + p2(2)72 + p1(z)7 + po(x),
where

= 22% 4+ 1322+ 2220+ 8

p3(z)

po(z) = —22% —112% — 182 -9
pi(z) = 22°+2°—62

po(z) = —22%+2*+22-1

with the general rational solution

2x —3
z2 -1

y(r) =c

In this case all algorithms compute the same denominator which is 22 — 1. In
this example, Algorithm 5.1.2 (without the gcd-improvement) would yield the
universal denominator z(z? — 1).

Example 5.3.5 Given Ly = 0 with L = (z +4)72 — (22 + 62+ )7 + x(z + 2),
thus we have

(x+4Dy(x+2) = (2 + 62+ Ty(x+1) +z(z+ 2)y(z) =0

with the general (rational) solution
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No problems arise and we immediately get the sharp denominator z(z+1)(x+2)
from all algorithms. However, using the loop "FOR i:=0 TO N DO” (resp. tak-
ing the nonnegative integers in Algorithm 5.1.11 in increasing order) would yield
the wrong universal denominator u(x) = z + 2.

The next example shows that the gcd-improvement is really essential:

(z—99)(x+101) (x—100) (z+100)

Example 5.3.6 Given Ly = 0 with L =72 — 2 —08) (a1102) T T (5 -98) (x1102) ’

thus we have

(z — 100)(z + 100)
(z — 98)(x + 102)

(z — 99)(z + 101)

YT +2) =2 o8+ 102)

y(z +1) +

y(z) =0

with the general (rational) solution

y(z) =

c1 + cx
(z — 100)(z + 100)

Without the gcd-improvement we would get as the universal denominator a
polynomial of degree 201 - namely u(x) = (x —100)(x — 99)...(z + 99)(z + 100) -
and the following search for the polynomial solution would be very costly. How-
ever, using the ged-improvement we immediately get the sharp denominator
(z — 100)(z + 100). This polynomial is also equal to van Hoeij’s denominator
bound and to the denominator polynomial of Algorithm 5.2.11.

Example 5.3.7 Given Ly =0 with L = p2(z)7% + p1(2)T + po(z) with

p(z) = (2% +4z+1)(2? + 42 + 6)(z* — 282° — 5527 — 262 — 9)
pi(z) = —2(z® 4 22— 2)(2® + 2z + 3)(2* — 262% — 972? — 822 — 18)
po(z) = (22 —3)(2® + 2)(z* — 242% — 13322 — 2162 — 117)

with the general (rational) solution

(@) = ¢ 3x+1+c T
yWwr=a 22 +2 2 523

The universal denominator is equal to (z2 + 2)(2? — 3), which is again already
found by the gcd-improvement. In this example an implementation of van
Hoeij’s algorithm over Q will compute no solution, because the denominator
cannot be factored into linear factors over Q. If the computation is done over
C (resp. over a splitting field of QQ), then we will get a sharp denominator
bound - however, computation in splitting fields tends to be slow. Thus, the
ged-improvement can also be essential for van Hoeij’s algorithm.

Note that an implementation of Algorithm 5.2.11 has no problems to compute
the denominator polynomial (z2+42)(22—3) - even without the ged-improvement.
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Example 5.3.8 Given Ly = f with L=7%>+7+1 and

1 1 1
@ —100)(z + 100) * (z —99)(z + 101) " (z —98)(z + 102)

f=

with the general rational solution

1
z — 100)(z + 100)

y(z) = (

Although, the gcd-improvement already computes (z — 100)(z + 100), the uni-
versal denominator u(x) becomes a polynomial of degree 398 - namely

u(z) = (z — 100)(z — 99)(xz — 98)*(x — 97)...(x + 98)*(x + 99)(x + 100).

Consequently, the following polynomial solution has degree 400 and the com-
putation takes some minutes. Van Hoeij’s algorithm and also Algorithm 5.2.11
immediately compute the denominator (z — 100)(z + 100) which is sharp.

The following example illustrates that van Hoeij’s algorithm may yield a
denominator bound which is of higher degree than Abramov’s universal denom-
inator because - as mentioned in the previous section - van Hoeij’s algorithm is
not optimal concerning S:

Example 5.3.9 Given Ly = f with L = 72+ (2® + 1522+ 3)7 —2(x+5) (2 +10)
and f =4 — 50x, thus we have

y(x +2) + (2 + 152% + 3)y(x + 1) — 2(x + 5)(z + 10)y(x) = 4 — 50z
with the general (rational) solution
y(x) =1

Abramov’s universal denominator and the denominator polynomial of Algorithm
5.2.11 are equal to 1. Van Hoeij’s algorithm, however, returns the denominator
bound z(z + 1)(z + 2)(z + 3)(z + 4).

Obviously, the computation of the universal denominator is fast in each
example - this is not true for van Hoeij’s algorithm (and also its variant for
the scalar case): The computation becomes slow as soon as the degree of the
denominator of the solution grows:

Example 5.3.10 Given Ly =0 with L = (z + 100)7 — z, thus we have
(x +100)y(z + 1) —2y(z) =0

with the general (rational) solution

z+1)...(z + 99)

y(z) = o
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Abramov’s algorithm immediately computes the sharp universal denominator
z(x 4+ 1)...(x +99). The same result is also computed by the other algorithms,
but it takes quite a long time.

Let’s sum up the main differences between all algorithms:

e Exactness: The denominator polynomial of Algorithm 5.2.11 always di-
vides Abramov’s universal denominator and also (the denominator) of van
Hoeij’s denominator bound. Usually, Abramov’s universal denominator
has highest degree.

e Computation speed: Abramov’s algorithm is fast for all examples. For
some special examples van Hoeij’s algorithm and its variant may become
problems.

e Full factorization (splitting fields): Only van Hoeij’s algorithm needs
full factorization resp. root finding over C.



Chapter 6

Hypergeometric Solutions

6.1 Petkovsek’s Hyper

Problem 6.1.1 We are given the following problem: Find all hypergeometric
solutions y € H of Ly = 0, where we suppose the following:

o L= EZ:opk(x) -k
e pi(z) € K[z]
®pn #0,p0 #0

Note that in this section we merely look at homogeneous equations - the
inhomogenous case will be treated in section 6.4.

Like in [Pet92], we will present the main idea for the general (homogeneous)
order-two equation

p(x) -y(r +2) +q(@) - y(z +1) +r(2) - y(z) = 0 (6.1)

Using the definition of "hypergeometric” is the first key step for the algorithm:
We set R(x) := #atl) and divide (6.1) by y(x) which yields

y(z)
y(z+2) ylz+1) y(z +1) () _
PO e D v T Ty T e =0
p(x) - R(x+1)-R(x)+q(x) - R(x)+r(z) = 0 (6.2)

By this substitution we gained a recurrence for the rational function R(z) -
unfortunately, not a linear one, so we cannot use our knowledge from Chapter
5 directly. We will instead use a similar idea coming from the following Lemma
which appeared - without the conditions (6.5) and (6.6) - in [Gos78] for the first
time:

81
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Lemma 6.1.2 Let R(x) be a non-zero rational function, then there exists a
nonzero constant Z € K and monic polynomials A(z), B(x) and C(zx) over K
such that:

R(z)=2Z B O (6.3)
where
ged(A(z), Bz +k)) =1 for allk € N (6.4)
ged(A(z),C(z)) =1 (6.5)
ged(B(z),C(z +1)) = (6.6

Proof: Without loss of generality we may assume that R(x) = Algg where A; (z)
and Bj(z) are monic polynomials with ged(A;(x), Bi(z)) = 1 - that means
we have already extracted the Z. We will first construct (algorithmically!) a
factorization of the type (6.3) which satisfies (6.4). Afterwards we will show
that the factorization also satisfies (6.5) and (6.6).

Suppose ged(Ar(x),Bi(x + k)) = 1forall k € N, then we can simply take
A(z) = Ai(x), B(x) = Bi(z) and C(x) = 1. Now suppose that there exists
hi € N such that u;(z) := ged(A41(z), Bi(x + h1)) # 1. Define Ay(z) := Ai(e)

u1(z)
and Ba(z) := #(fh)l), then

Ay () _ As(z)  wi(z) _ Ax(z) Car(z+1)
B1 (iL’) BQ(.CI?) U1 (iL’ - hl) BQ(.CB) CQ(.CB)

R(x) =
with
Ca(z) =u(x—1) - u(x —2) cc.rur(z — hy) = Hulx—j

Repeating this procedure on g E 3 an so on yields

_ Ap() Um—1(T) u1(x)
R@) =5 %) mm by wn = hn)
with ged(Ap (z), Bm(z + k)) = 1forall k € N. Thus we can take A(z) :=
Ap(z), B(z) := By (2) and
m—1 hi
C(z) := H Ci(z) with Cj(z H (z — j)

To show (6.5) and (6.6) it is essential to assume that hy < ha < ... < hyy—1 which
causes of course no problems in the computation above (but can change the
final result). We first prove that for ¢ € {2,3,...,m — 1}: ged(4;(x), Ci(z)) = 1.
Because of our assumption we have ged(A;(x), B;(z + j)) = 1 for 0 < j < hy,
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therefore ged(A;(x), u;(x — h; + 7)) = 1 for 0 < j < h;. The statement follows
from the definition of C;(x). In order to see (6.5) observe

Ai(z) Ci(z+1) Co(z+1)

RO =5 w7 o0

fori € {2,3,...,m}.

Condition (6.6) can be proven analogously.

|
Lemma 6.1.3 Let a,b,c, A, B,C € K[z] such that
ged(a(z), c(x)) = ged(b(x), c(x + 1)) = ged(A(x), B(z + k)) =1, Vk € N.
If
a@) clo+1) _ Alw) Clo+1) 61

bz) clx)  Bl@) Cla)

then c | C. As a consequence the representation of the form (6.3) together with
the conditions (6.4), (6.5) and (6.6) is unique.

Proof: Let

9(x) = ged(c(),C(x)), dx) =——, D(z) =

Then ged(d(z), D(z)) = ged(a(z), d(z)) = ged(b(z),d(z + 1)) = 1. Substituting
d(x) and D(z) in (6.7), canceling g(z)g(x + 1) and multiplying by the common
denominator yields

—~

A(z)b(z)d(z)D(xz + 1) = a(x)B(x)D(z)d(x + 1)
Thus - because of the ged-properties,
d(z) | B(x)d(z+1)
dlz+1) | A(z)d(z).
Using this relation repeatedly we obtain for k£ € N:
d(z) | B(z)B(x+1)..B(z+k—1)d(xz+ k)
dz) | A(z —1)A(z —2)..A(x — k)d(z — k).

Since K has characteristic 0, ged(d(z),d(z + k)) = ged(d(z),d(z — k)) = 1 for
all large enough k. It follows that d(x) divides both, A(x —1)A(z—2)...A(z —k)
and B(z)B(x + 1)...B(x + k — 1) for all large enough k. But these two poly-
nomials are by assumption relatively prime, so d(x) is a constant and therefore
ged(g(z), c(x)) = c¢(x). Hence c(z) divides C(x).
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Remark 6.1.4 A representation of a rational function in the form (6.8) with
condition (6.4) is called Gosper-form or G-form. Together with the conditions
(6.5) and (6.6) the (unique) representation is called Gosper-Petkoviek-form or
GP-form.

Let’s continue with the derivation of Petkovsek’s Hyper: After substituting
(6.3) into (6.2) and multiplying by the common denominator we get

Z? p(x) Az +1) - A(z) - C(z +2) +
+ Z-q(x)-A(z)-B(z)-C(z+1)+ (6.8)
+ r(z)-B(zx+1)-B(z)-C(z)=0

Now we have gained an recurrence of order two for the polynomial C(x), which
enables us to use an algorithm from Chapter 4 - however, we need additional
information about A(z), B(x) and Z:

e In (6.8) A(z) is part of the first two summands, therefore A(z) has to
divide the third one. Because of (6.4) and (6.5) it follows that A(x) divides
r(x) (which is given).

e Analogously B(z + 1) is part of the last two summands of (6.8), therefore
it has to divide the first one. Because of (6.4) and (6.6) it follows that
B(z + 1) divides p(x).

e With given A(z) and B(z) we can determine the possible values of Z
by considering the leading coefficient of the left hand-side of (6.8) which
yields a quadratic equation with known coefficients.

This method for order 2 can easily be generalized for arbitrary order n. Let’s
summarize the complete algorithm in

Algorithm 6.1.5 (Hyper) by Marko Petkoviek
INPUT: Ly = 0 with

o L=>37_pr-T" where pp € K]
® po;pn 70

OUTPUT: A set B of hypergeometric functions y; (not necessarily linear inde-
pendent) such that all y; are solutions of Ly =0

BEGIN
B=90
Compute all monic factors A(z) of po(x)
Compute all monic factors B(z) of p,(x —n +1)
FOR ALL pairs A(z) and B(z) which satisfy (6.4) DO



6.2. VAN HOEILJ’S SINGULARITIES-APPROACH 85

FOR k € {0,1,...,n} DO
Py(w) = (@)  TT;Z0 A@ + ) - T[;Z, B(n + )
Compute the leading coefficient oy, of Py (x)
Compute all non-zero solutions Z of Y} _, a,Z*¥ =0
FOR ALL Z DO

Find all non-zero polynomial solutions C(z) of

> ZFPy(x)C(z + k) =0 (6.9)
k=0
R(z) =2 56} G
Compute y(z) as the of y(x + 1) = R(x) - y(x)
B:=BU{y}
Return B

END

Remark 6.1.6 Remarks on Algorithm 6.1.5

e Observe, that it is possible to cancel out the factor A(x)B(z +n —1) from
(6.9) which can reduce the degree of the difference equation.

e One can generalize Hyper to find m-hypergeometric solutions (these are
functions y such that 7™(y) = r -y for a positive integer m and a rational
function r). For details see [PeSa93].

e Note that for the special case ”constant coefficients” the equation for Z is
nothing else than the characteristic equation given by L itself.

o MATHEMATICA-versions of Algorithm 6.1.5 over Q and C have been im-
plemented by Marko Petkoviek and are available as ”Hyper” at his Home-
page (hitp://www.fmf.uni-lj.si/ petkovsek/). Note that Petkoviek’s imple-
mentation returns the set of all R(x) - the certificates, not the solutions
itself.

6.2 Van Hoeij’s Singularities-Approach

The main idea of van Hoeij’s algorithm is the construction of first order right
hand factors 7 — r (which corresponds basically to the construction of R(z) in
Hyper). The solution of (7 — r)y = 0, however, does not have to be an exact
solution of Ly = 0, but has to be a solution modulo C(x). In other words we
try to find solutions of Ly = 0 in H/C(z).

Because the r of the factor 7 — r is a rational function, we try to construct r
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by determining all roots and poles of r (together with their orders/valuation).
Additionally we will study the singularity of L at the point p = oo.

Let’s start with the singularity p = oo:

Definition 6.2.1 Let L = 7 —r with r € C(z). Asr can be (uniquely) written

as d 1
)
xz X

for some ¢,d € C and n € Z, we define
goo(L) :=(e,n,d+Z) € Hoo :=C* x Z x (C/Z).

Example 6.2.2 Let L = 7 — gifé, then goo(L) = (,1,3+ Z) = (3,1,72),
because

1 22+1
r = =
2 x-—3
1, 22+1
— —-r  —
2 72 - 3z
1 3z +1
= —.71.(1
2 . (+m2—3m)
1, 3 10
- .. (1+2
2 x (+x+x2—3a:)

Now, the following question appears: In order to compute all first order right
hand factors 7 — r of an difference operator L, can we compute the (¢, n,d)-
information from L, or in other words can we compute the set

Too(L) := {goo (M) | M is a first order right hand factor of L}

The answer is "yes” - with the help of Puisseux’s Theorem (resp. its proof),
which shows that C((x)) is algebraically closed, that means every polynomial
f(z,y) € C((z))[y] has a solution § € C((z)) with f(z,7) = 0. We will adapt
this theorem for the ring C(z)[r] (resp. C[z][r]). As a consequence we know in
advance:

Lemma 6.2.3 The number of elements of G (L) is at most order(L).

The proof of Puisseux’s Theorem is constructive and can be used for the
computation of g, (L) as showed in the following. The main tools for this proof
are the so called Newton polygon and Newton polynomial:

Definition 6.2.4 Let L = Y31 > a; ;a7 7%, then the T-polygon of Newton
N-(L) is defined as the convexr hull of all points (i, —j) in a cartesian coordinate
system for which a;; # 0 for 0 <i<n and 0 < j < m. Between the leftmost-
undermost point Py and the rightmost-undermost point P, (counterclockwise)
the T-polygon possesses a finite number of edges with rational slopes.



6.2. VAN HOEILJ’S SINGULARITIES-APPROACH 87

Note that the points and edges between the rightmost-undermost and the
leftmost-undermost point (from the right to the left) are of no interest.

Example 6.2.5 Let’s construct the T-polygon of Newton of
L = o' = (52* +52°=7) 7> +(252° =313 - 352) 7% — (202° - 1752* —282%) T — 1402°

The polygon consists of the following points Py = (0,-5), P, = (1,—6), P, =
(2,=5), P; = (3,—4) and Py = P. = (4,-1). (The other points of the polygon
are of no interest.) Therefore the polygon possesses the following slopes: —1
between Py and Py, 1 between Py and Pz (P lies on this line), and 3 between
P; and Py.

Proposition 6.2.6 Some easy properties of the T-polygon of Newton:
(a) N,(L) is a finite subset of Rt x R~

(b) If L € C[7], then the T-polygon of Newton degenerates to a line which is
a finite subset of the R -axis.

(¢) If L is normal, then Py = (0,—d), where d is the degree of the coefficient
of 9.

(d) If order(L) = n, then P, = (n,—d), where d is the degree of the coefficient
of ™.

(e) All points between Py and P, are of the form (k,—d) where d is the degree
of the coefficient of TF.
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Definition 6.2.7 Let L = 377" ;327" a; ja’ 7', let Ny (L) be the corresponding
T-polygon of Newton and let p be a slope of the polygon between the points
(iO(p)a _jO (p))7 seey (i"]p (p)7 _jnp (p)); that means that

Jr(p) — jo ()

iwp) —io(p) ~ P TFEALZ T

Then the characteristic polynomial or Newton polynomial (at p) P,(T) is de-

fined by
Mp

Py(T) == Z% (0) g (py TH P 0P
k=0

Example 6.2.8 Continuation of Example 6.2.5:

P_(T) = —140—20T = —20(T +7)
P(T) = =20+25T —5T% = —5(T% = 5T +4)
P(T) = -5+T=T-5

Proposition 6.2.9 Some easy properties of the Newton polynomial:

(a) deg Pp(T') =iy, (p) —io(p) which can be seen as the “length” of the corre-
sponding edge.

(b) If L € C[7], then Pp(1) =L
Let’s formulate the main result which comes from Puisseux’s Theorem in

Theorem 6.2.10 Let L € Clz][r], let M be a right hand factor of L and let
Joo (M) = (¢,m,d), then n is a slope of the T-polygon of Newton and c is a root
of the corresponding Newton polynomial.

Thus, by this theorem we get all possible n by finding all integer slopes of
the 7-polygon of Newton and ¢ by finding all roots of the corresponding Newton
polynomial. What remains is the d:

1

Suppose we have ¢ and n, then we can calculate the operator L = LO(T — =)

By definition of the symmetric product L now contains the right hand factor of
the form 7 — (14 £ 4+ O(Z;)) - that means ¢ = n = 1. Now, the possible d’s can
be computed as the roots of the Newton polynomial for slope 0 of the A-polygon
of Newton (Definitions below, for more details see [BaDu94], [Duv83], [Tou87]).
By definition of the d, it suffices to take the roots modulo the integers.

Definition 6.2.11 Let L = Y. (Y7 cija? A and let T := {(z,y) € R* |
y > 0Az <y}. Then the A-polygon of Newton Na (L) is defined as the convex
hull of all polygons of the form T + (i,i—j) for which ¢;; # 0 for 0 <i < n and
0 < j < m intersected with RT x R.

Proposition 6.2.12 Some easy properties of the A-polygon of Newton:
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(a) N, (L) is an infinite subset of RT x R
(b) The edge with slope 1 has infinite length.

(¢) If order(L) = n, then the A-polygon of Newton can only have the slopes
0,1 2 .. 1

> mt om?

Analogously to the newton polynomial for the 7-polygon, one can define the
newton polynomial for the A-polygon for slopes greater or equal than 0 and less
or equal than 1. We will only need the newton polynomial for slope 0, which is
defined in a slightly different way:

Definition 6.2.13 Let L =Y 7" (37" ;¢i ja? AY, let Na(L) be the correspond-
ing A-polygon of Newton. and let p := sup{j — i | ¢;; # 0}. Then the charac-
teristic polynomial or Newton polynomial at 0 Po(T') is defined by

Py(T):= ) i (—1)T = > ci,jl_](—T—k)
k=0

J—i=p Jj—i=p

Note that all ¢; ; with j — ¢ = p lie on the edge with slope 0.

Let’s formulate the algorithm for computing the set g, (L):

Algorithm 6.2.14 ((c,n,d)-Information) by Mark van Hoeij
INPUT: L € Clz][7]
OUTPUT: The set (L)

BEGIN
Joo(L) =10
Construct the 7-polygon of Newton of L
Compute the set of all integer slopes N of the polygon
FOR EACH n € N DO

Compute the Newton polynomial P, (T")

Find the set of all roots C of P,(T) =0

FOR EACH (distinct) root ¢ € C' DO
L= LO(T — C%")
Construct the A-Polygon of Newton of L
Compute the Newton polynomial for slope 0 Py(T)
Find the set of all roots D modulo the integers of Py (T')
FOR EACH d € D DO g (L) =G (L) U{(c,n,d)}

Return g (L)
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END

Let’s turn to the finite singularities:

Definition 6.2.15 Let the difference operator L = Y1 _pi(z) - 7% € Clz, 7]
with ged(po, ---,pn) = 1 be given. Then q € C is called a problem point if q is a
root of the polynomial po(x)pn(x —n) and p € C/Z is called a finite singularity
if Popr has a root in p.

Note: If using the recurrence relation for solutions y of L we cannot de-
termine u(q) from u(q — 1),...,u(q — n), or we cannot determine u(q) from
u(q + 1), ...,u(qg + n), then the point ¢ € C is a problem point. The finite
singularities in C/Z are the problem points modulo Z.

Example 6.2.16 Suppose we have L = (x + 1)(z + 2)(x + 3)7> + (2 + 1)7 —
(2 —2). Then the set of all problem points is {—1,0,1,—+/2,v/2} and the set
of all finite singularities is {0, —v/2,v/2}.

Before we can define the analogue to the (¢, n,d)-information for finite sin-
gularities we have to extend Definition 5.2.2 about the valuation of a rational
function at a point p € C/Z.

Definition 6.2.17 Let r € C(x)* and p € C/Z, then the valuation of r at p is

op(r) = D og(r)

qEP+Z

Example 6.2.18 Let r = $5(Iallzgizg;i)l()§2+2) then have:

e y(r)=5+2+(-1)=6
° 1}%(7')214-(—4):—1

° v 5(r) =v_;m5(r) =1
e v,(r) =0 for all other p € C/Z

Definition 6.2.19 Let L = 7 —r with r € C(z). For every p € C/Z we define
the valuation growth of L at p as

gp(L) :==vy(r) €Z

The map p — gp(L) defines a function from C/Z to Z which has finite support.
Let H be the product of the additive group of all functions C/Z — Z with finite
support and the group Hoo from Definition 6.2.1. Then we define

9(L) = (p+ 9p(L),900(L)) € H

Hence, g is a map from the set of first order difference operators into H.
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Definition 6.2.20 Let Hp C H be the set of all (f,(c,n,d+ Z)) € H (where
f:CJ/Z — Z has finite support, c,d € C and n € N) for which

Z flp)=n and d+ Z f(p)p=0mod Z (6.10)

peC/Z peC/Z

The relations (6.10) are called Fuchs’ relations.

Example 6.2.21 Continuation of Example 6.2.2: We had L = 17 — 2+l opg

2z—6
computed goo(L) = (3,1,Z). Furthermore, we have g;(L) = 1, g (L) = 1,
go(L) = —1 and g,(L) = 0 for all other p € C/Z. Let’s check the Fuchs’
relations:

o fp=1+1+(-1)=1 = n

peC/Z
O+i-1+4+(—i)-140-(-1)=0 = 0modZ

Before we can formulate the first main theorem, we have to take a look at
the following groups (recall Proposition 3.2.9):

Proposition 6.2.22 Let Ly := {r—r |r € C(x)*} be the set of all monic first
order difference operators which have a nonzero (hypergeometric) solution and

let L :== {7 — @ | € C(x)*} be the set of all monic first order difference
operators which have a nonzero rational solution (namely r), then:

(a) With the operation S both, Ly and Lg, become multiplicative groups.
(b) For all L € Lg and p € C/Z we have: gp(L) =0

Theorem 6.2.23 Let g : Ly — H be the group homomorphism between Ly
and H defined in Definition 6.2.19, then:

(a) The kernel of g is Lr

(b) The image of g is Hr
As o consequence, g : Ly /Lr — Hp is an isomorphism.
Proof:

(a) Because of the definition of Lp it is clear that Lg is contained in the kernel
of g. On the other hand, an element L can only be Lg if c=1and f =0,
ie. if g(L) = (0,(1,0,Z)), which is the identity in H . So the kernel of g
is contained in L and hence equal to Lg.

(b) To show that the image is contained in Hp, it suffices to verify that this
is true for the ”generators” 7 — ¢ and 7 — (x — q) of the group Ly with
¢ € C*,q € C (see Proposition 2.2.14):

e Case 7 —c: g(t —¢) = (0,(c,0,Z)) € Hr
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e Case 71— (z—¢q): g(t—(x—q)) = (f,(1,1,Z)) € Hp, where f =1
for ¢ € C/Z and 0 otherwise.

Conversely, let hp = (f,(¢,n,d)) be an arbitrary element of Hr with
f(p;) = e; # 0 for a finite set of py,...,px € C, and 0 otherwise. Let

L=7—c-(x—p1)®-...-(x —pp)°*
then L € Ly and g(L) = hp, which shows that g is also surjective.
|

Corollary 6.2.24 We have the following 1 — 1 correspondences for a solution
y of Ly = 0:

y e H/C(z)" +— L€ Ly/Lr+— g(L) € HFp

In other words this corollary says: If we have the g(L), then we can construct
the hypergeometric solution y modulo a rational function. This is the main idea
of van Hoeij’s algorithm. Thus, we have to look for a method for computing
the g(L), respectively the map p — g,(L). We will do this in the following
subsection.

6.2.1 Computing valuation growths

Looking back to the singularity at infinity, we would like to have something
similar to goo(L), in other words a set like

{9p(M) | M is a first order right hand factor of L}

for all p € C/Z. Unfortunately, we will see that we cannot always compute this
set exactly, but only a superset. This superset will be denoted by g,(L).

We will demonstrate the general idea on the following example:

Example 6.2.25 Suppose we have the difference operator L = 7 — z(x + 1)
with the solution y = (x — 1)! - 2! = T'(x)T'(z + 1). Because order(L) = 1, we
already know in advance that g,(L) =2 for p € Z and g,(L) = 0 for all other p
(by Definition 6.2.19). Let’s compute this result with other methods:

o Analytic way: By analytic methods, we know that the solution y has a
pole of order 2 (valuation -2) for negative integers, a pole of order 1 in
0 (valuation -1) and no poles in the positive integers (valuation 0). So
going through the integers from the left to the right, passing the problem
points, the valuation increases exactly by 2. Furthermore, y has no other
poles, so the valuation ”increases” by 0 when going through p ¢ Z.
The problem with this method is simply that determining pole orders of
functions like z! can hardly be done by computers!
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e Algebraic way: Let’s first extend the field of constants to C(e), where €
is transcendental over C. Then we can define the ”deformed” difference
operator Le := 7 — (x +€)(x + € + 1) € C(¢, x)[7] with solutions %. Now,
0 and —1 are no problem points any more, thus we can use the difference
relation without problems:

— Calculation from the left to the right, starting e.g. with @(—2) :=1

yields:
a(=1) = (=2+e)(-1+¢)
a(0) = (=2+e)(~1+e)%
(1) = (—2+e€) (=141 +¢)

Now the e-valuation! of (1) (and also of the following di(k)) is 2.

— Calculation from the right to the left, starting e.g. @(2) := 1 yields:

N _ 1
) = Gr9ete
. 1
W) = AroraTe
a(-1) = !

(—14+e)e2(1+€)2(2+¢€)

Now the e-valuation of @#(—1) (and also of the following %(k)) is -2.

— It is easy to verify that an analogous calculation starting at a point
p ¢ Z yields e-valuations 0.

We will see that the e-valuation 2 of the first calculations yields a lower
bound for g,(L) (for p € Z) and the e-valuation —2 of the second one,
multiplied by —1, yields an upper bound for g,(L). Thus, in this case,
gp(L) =2 for p € Z (and g,(L) = 0, otherwise), as it should be.

Let’s turn to the general case:

Definition 6.2.26 Let € be a new indeterminate; € is transcendental over C.
Define the action of T on C(z,€) as 7(€) = € and, as usual, 7(z) = z + 1.
This turns C(z,€) into a difference field with C(e) as the field of constants. For
a € C(e) the e-valuation is

ve(a) =sup{m € Z | a € €"([[¢]]} € ZU {0}

(which corresponds with Definition 5.2.2, taking C(e) as the field of rational
functions in € over C).

Let L € C(z)[r]. Define L. € C(e,z)[7] as the operator one obtains from L by
replacing x by x + €. We call L. the deformation of L.

1The power of e contained in an expression - see Definition 6.2.26
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For the next considerations we will use the following definitions/notations:
o L=p, 7"+ ...+ po7° € Cz, 7] with p,, # 0 and py # 0
e peC/Z

e g, (resp. g,) is the smallest (resp. largest) problem point at p, so ¢; (resp.
gr) is the smallest (resp. largest) root of po(x)p,(z — n) in p. If pis
not a singularity (so then there are no problem points at p) then we take
arbitrary elements gq;, g, € p.

¢ We will also use the following solution spaces for L (and also analogously
for L):

— Denote by V(L) := {u : p = C | Lu = 0} the set of all solutions
of L which are defined on the line p + Z and analogously denote
Vp(Le) :={t : p = Ce) | L(@) =0}

— Denote by V(L) := {u: ¢ — N = C | Lu = 0} the set of left
solutions

— Denote by V, (L) := {u : ¢ + N - C | Lu = 0} the set of right
solutions

Definition 6.2.27 Let @ € V(L)

o The left valuation v, (@) is defined by

Ve, (@) = min{v (G(m)) | m € ¢g — 1 - N}

The right valuation v, (@) s defined by

Ve,r(4) = min{v.(G(m)) | m € ¢, + 1+ N}

The valuation growth g, (@) is defined by

9p,e (W) = Ve, r(T) — v, (0) € Z

The set, of valuation growths of L at p is defined by

gp(L) = {gp,e(a) KES Vp(Le)»a #0} CZ

If ve (@) > 0, then the left projection pi(@) € V(L) is defined by sub-
stituting € = 0 in 4. Similarly if ve (@) > 0, then the right projection
pr(@) € V, (L) is defined.

First of all, we have to show that the defined g,(L) really has the property
of being a superset of {g,(M) | M is a first order right hand factor of L}. This
is an immediate consequence of the following lemma:
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Lemma 6.2.28 Let L, N, M € C(z)[r] be normal
(a) If order(L) = 1, then g,(L) contains only one element, §,(L) = {g,(L)}
(b) If L=NM, then g,(M) C g,(L).

Proof: (a) Follows directly from the definition of g,(L). For (b), observe that
M is a right hand factor of L, so M, is a right hand factor of L. and therefore
Vo(M,) C V,(Le) by Theorem 3.1.6 (d) and hence (b) follows.

Remark 6.2.29 It is easy to see that Lemma 6.2.28 holds also for p = oo.
Without poof we mention that §,(N) C gp(L) as well, and that Joo(L) =
Joo (M) U goo(N). However, if p is finite then examples show that in general
the set gp(L) is not determined by gp(M) and g,(N).

We can finally generalize the computation in our Example 6.2.25 with help
from

Lemma 6.2.30 Let @ € Vp(Le)
(a) ve, (@) = minfoe(@(m)) [m € {g = 1,q = 2,...,q0 — n}}
(b) ve,r (@) = min{oe(@(m)) [ m € {gr + 1,¢r +2,...,¢r +n}}

Proof: Note that for all m € ¢ — 1 — N (resp. m € ¢, +1 + N) the leading and
trailing coefficients of L, have e-valuation 0 and all other coefficients of L, have
e-valuation > 0. Since the @(m) for m € ¢ — 1 —N (resp. m € ¢, + 1+ N)
are determined by L. and the a(m) for m € {¢ — 1,q — 2,...,qt — n} (resp.
m € {g-+1,¢r +2,...,¢r + n}), the statements follows.

Algorithm 6.2.31 (Valuation Computation) by Mark van Hoeij
INPUT:

o L=3"}_opk- 7" where py € Clz]
® pn #0 and po # 0
e peC/Z

OUTPUT: The set g,(L) C Z

BEGIN

Determine ¢; (resp. ¢.) as the smallest (resp. largest) root of the polyno-
mial po(z)pn(z —n) in p.

FOR 1,] € {1,2,...771} DO ﬂi((ﬂ —]) = 171-(qr +]) = (51']'
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FOR i € {1,2,..,n} DO

FOR m € {q,q +1,...,¢r, ..., gr + n} DO Compute @;(m) with the
deformation L. (forward direction)

FOR m € {¢r, ¢ — 1, ...,q, ---,qt — n} DO Compute 9;(m) with the
deformation L, (backward direction)

9p.r(L) := min{ve (@) | 1 < i < n}
9pi(L) := —min{ve;(¢;) | 1 <i < n}
go(L) :={e € Z| gp,r(L) < e < gpu(L)}
Return g,(L)

END

Theorem 6.2.32 With the notations of Algorithm 6.2.81:
gp,r(L) = min(gy(L)) and g, (L) = max(gp(L)) which proves the correctness of
the algorithm.

Proof: With @; and 9; defined in the Algorithm, note that v, ;(G;) = ve (0;) =0
and that v, ,(4;) and ve;(¥;) are computed in the Algorithm. Therefore (see
Definition 6.2.27)

gpr(L) = min{o.,(4;) —0]1<i<n}=min{g,(4;)|1<i<n}
9pa(L) —min{ve (%) [1<i<n}=
= max{0—ve () | 1 <@ <n}=max{g,(0:) | 1 <i<n}

Because every non-zero 4 € Vp(Le) can be written as
i = Vet (@) E a;t; = ever (@) E b; ¥
i i

for some a;, b; € C(e) with v(a;) > 0 and v.(b;) > 0, the statement follows.

Remark 6.2.33 Remarks on Algorithm 6.2.31:

e The computation of the 4;(m) and ©;(m) is the most time consuming part
in the algorithm. It should be done modulo a suitable power of € to reduce
intermediate expression swell. A possible power of € would be vy(po - Pp) +
1. Moreover, we can combine this with modular arithmetic to eliminate
expression swell.

e Note that computing the g,(L) is similar to finding the bounds Bl(p) and
B! (p) of section 5.2. Additionally, we know the following (see theorem
6.2.23): L has only rational solutions if and only if g,(L) = {0} for all
p € C/Z. In this case we also have goo(L) = {(1,0,Z)}.
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At this point, at the latest, we know that g,(L) = {0} if p € C/Z is not
singular - nevertheless, this is not a necessary condition, which leads to the
following definition:

Definition 6.2.34 Let p € C/Z a (finite) singularity. If g,(L) = {0} then p is
called an apparent singularity. If g,(L) has only 1 element then p is called an
semi-apparent singularity. If g,(L) has more than 1 element then p is called an
essential singularity.

Definition 6.2.35 Let 4y, 0;, 9p,r(L) and gp (L) be like in Algorithm 6.2.51.
Furthermore define the basis u, ..., un for V(L) by u; = pi(i;) and the basis
V1y ey Uy for Vi (L) by v; = pr(9;). Because we can reconstruct @; from u; and
0; from v (as s(qr—j) = wi(q —J) and ¥;(q, +7) = vi(g-+j) for j € {1,...,n}),
we can define the following C-linear maps Ep, .1 and Ep 1 by

Eprp : Vou(L) = Vyr(L) with By, p(u;) = py(i; /e L))
Ep: Vour(D) = Vou(L) with By, (vi) = pi(0; - e+
It is easy to see that the maps FE, . 1 and E,; 1 are 1 — 1 and each other’s

inverses if p is not a singularity - one can even identify V,, (L) and V,;(L) with
Vp(L)! Nevertheless, we can show more:

Theorem 6.2.36 If g, (L) = gpi(L) (i.e. p is a semi-apparent singularity),
then Ep .1 and Ep; 1 are each other’s inverses. If gp,(L) # gpi(L) (i.e. p
is an essential singularity), then Ep 1 0 Epi 1, = Epj1, 0 Eppp, = 0, in other
words

Im(Ep, 1) C Ker(Ep;,1) and Im(E,; 1) C Ker(Ep 1)

Proof: By 1(Bpp1)(®) = Byt (1(5i - e91))) = p, (5; - ei(F) ene (1)) =
pr(ﬁi : egp'l(L)_gp’T(L))' Let s:= gp,l(L) - gp,T(L) 2> 0 as gp,'r(L) < gp,l(L)a then
we can distinguish two cases:

e Casel: s=0= Ep,,(Ep,1)(vi) = pr(0;) =0,
e Case2: s>0= E,,1(Epsr)(vi) =pr(0;-€)=0

The linear map E, ;1 o By -, can be computed in the same way.

Corollary 6.2.37 Let the matrices A and B be defined by

N . 1 - .
Qij = Pr (ui(QT +7)- m) and  bij :=p (Uz’(m —J) '691"1@))

then
B=A"& 9p,r(L) = gpu(L)
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This corollary can be used to speed up Algorithm 6.2.31: Suppose we com-
puted only the @;(m) and the g, (L) and noticed that the matrix A defined
in the corollary is regular. Then we know that p is (semi-)apparent and that
gp(L) = {gp,r(L)}. Thus, we need not compute the @;(m).

Before we can formulate van Hoeij’s algorithm completely we have to consider
one remaining problem: "How can we compute an exact solution y when we
know a solution § modulo C(z)?”

Lemma 6.2.38 Let L € C(z)[r] and let § with (1—r)§ = 0 be a hypergeometric
solution of L modulo C(x), i.e. there exists a rational function R such that
Ly =L(§-R) =0. Then R can be computed as the (complete) rational solution

of LO(T - 7).

Proof: y=9-R<& R=vy - % Now the statement follows from Definition 3.2.5
together with Proposition 3.2.9.

Algorithm 6.2.39 (HHyper) by Mark van Hoeij
INPUT: Ly = 0 with

o L=37_,px- 7" where py € Clz]
® po,pn # 0

QUTPUT: A basis B for the space of hypergeometric solutions over C of Ly = 0.
More ezactly: A set B = {yir1,...,qir1} such that y;r; are hypergeometric solu-
tions of Ly = 0 where y; is purely hypergeometric and r; is a linear combination
of rational functions.

BEGIN
B=10
Compute all monic factors of the polynomial po(z)p, ()

Throw out all factors which are integer-shifts from another factor, then
the set S = {p1, ..., pm } of all finite singularities are the roots (modulo the
integers) of the remaining factors.

Compute goo(L) with Algorithm 6.2.14
IF goo(L) = {} THEN Return B
FOR p; € S DO compute gy, (L) with Algorithm 6.2.31

FOR ALL tupels (ex, ..., em, (¢,n,d)) for which e; € gp, (L) and (¢,n,d) €
Joo(L) and which satisfy the Fuchs’ relations DO

ri=c- H:’;1(-'E —pi)
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END

Compute y such that % = r (the solution of (7 —r)y = 0)

Compute the general rational solution R of L&(7 — %)(R) =0 (if
exists)

IF R could be found THEN B = BU{y - R}

Remark 6.2.40 Remarks on Algorithm 6.2.39

6.3

Algorithm 6.2.39 can be varied in the following manner: Instead of com-
puting all hypergeometric solutions over C, one can also compute all hy-
pergeometric solutions over a given subfield C C C. In this case, we merely
have to factor and to find roots over C, and also the elements of Goo(L)
have to be in C. For more details see [vH099).

A MATHEMATICA-version of Algorithm 6.2.39 over Q and C is avail-
able at the RISC-Homepage. Note that this implementation does not re-
turn the set B = {y1r1,...,yir;} but the set {ToHG[h1]r1, ..., TOHG[]r; }

where h; = % The "pretty” solution can be achieved by a conversion
function.
Examples and Comparison

Some easy examples computed with Hyper (Algorithm 6.1.5) and HHyper (Al-
gorithm 6.2.39):

Example 6.3.1 Given Ly =0, with L = (x —1)72 — (2® + 32— 2)7+ 2z(z + 1),
thus we have

(z — Dy(z +2) — (2% + 3z — 2)y(x + 1) + 2z(z + Dy(z) =0

with the general solution

y(z) = ¢12° + cox!

Hyper yields {2,z + 1}, HHyper yields {c¢[1]ToHG[2], ¢[2]ToHG[z + 1]} or after
a conversion {c[1]2%, ¢[2]z!}.

Example 6.3.1 Given Ly = 0, with L = 72 — 2z + 1)7 + (22 — 2), thus we

have

yx+2)— e+ Dy(z +1)+ (2® — 2y(z) =0

with the general solution

y(@) = c1(=V2)* + &(V2)" = a1l (z — V2) + eoT(z + V2)
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Hyper yields {—\/5 +2,V2+ x},
HHyper yields {c[1]ToHG[—v/2 + ], c[2] ToHG[v/2 + z]} or after the conversion
{c[1]RisingFactorial[—+/2], c[2]RisingFactorial[v/2]}.

Example 6.3.2 Given Ly = 0, with L = (z + 2)(2z + 3)7% — 2(42% + 13z +
9)7 + 3z(2x + 5), thus we have

(x+2)22 4+ 3)y(x +2) — 242 + 132 + Ny(z + 1) + 322z + 5)y(z) =0

with the general solution

1
y(z) = 13" + 025

}, HHyper yields {1, ¢[2]ToHG[3]} of after a conversion

T

Hyper yields {3
(< c[213°}.

T

_z
? r+1

Example 6.3.3 Given Ly = 0, with L = 372 — 27 + 2 — 1, thus we have
3y(z +2) —zy(z+ 1)+ (z — )y(z) =0
with the only hypergeometric (resp. polynomial) solution
y(2) = 1 (2 — 112 + 27)

Hyper yields %7 HHyper yields {c[1](z? — 11z + 27)}.

For most of the ”common” examples Hyper works perfectly well. In many
cases it is faster than HHyper, as computing the g,(L) in HHyper takes some
time. However, Hyper becomes problems with examples of the following kind:

Example 6.3.4 Given Ly = 0, with L = p3(z)73 + p2(2)72 + p1(z)7 + po(x)
where

p3(z) = (Bz+8)(3z+10)(z+3)(z+2)(z+1)
pez) = =3Bx+5)Bz+T7)(xz+2)(z+1)
pi(z) = Br+2)Bzx+4)(z+1)

po(z) = —Bz—1)Bz+1)

with the general solution

_a+(@=3)ea+ (2 =3z +T)cs
B z!(3z — 1)(3z + 1)

y(x)
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Hyper yields
1 3xr—1 3z —1 3z +1 3z+1
{1+x’x(3x+2)’ (x+1)Bz+2) z(3z+4) z(3z +4)’
Bz —1)3z+1) Bz —1)(3z+1)
(x-=1)Bz+2)(Bz+4) z(3z +2)(3x +4)’
Bz —1)(3z+1) (z+1)Bz—-1)(3x+1)
(z+1)Bz+2)3x+4)" 223z +2)(3z+4) }

Although there seems to be a contradiction to Theorem 3.1.2 (we expected only
three solutions), each of these nine functions yields a solution of Ly = 0, but
they are (of course) not linearly independent! This shows the first (and minor)
problem of Hyper. Especially, if L has more (linearly independent) rational so-
lutions, Hyper will come up with some kind of ”superset of linearly dependent
solutions”. Nevertheless, this is a minor problem, because we could modify the

algorithm to test for linear dependencies. HHyper has no problems with the
c[1]+(z—3)c[2] + (x> —3z+7)c[3]
z!(3z—1)(3z+1) }

example and yields (after conversion) {

Taking a closer look at the last example one can even see the real problem
of Hyper: The number of cases to work out, which grow exponentially with the
degree of the leading and trailing coefficient. Let’s illustrate this growth with
the next example:

Example 6.3.5 Given Ly =0, with L =7 — Hle(x +k) and k € N, thus we
have

k
ylx+1) - H(x +i)y(z) =0
i=1
with the general solution
k—1
y(z) = H(x +i)l =2z +D.(z+Ek-1)!
i=0

The following table shows the time needed by Hyper (resp. HHyper) to compute
the solution:

k 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
Hyper | 0.33 | 0.58 | 0.88 | 1.71 | 3.29 | 6.65 | 13.19 | 26.75 | 55.14
HHyper | 0.77 | 0.82 | 0.93 | 1.05 | 1.26 | 1.37 | 1.60 | 1.86 | 1.92

One easily recognizes the exponential growth of the computing time for Hyper,
which is due to the number of cases (2% which is the number of monic factors
of the trailing coefficient) to work out. One the other hand, the computation
of g,(L) by HHyper yields go(L) = k, that’s why HHyper only has to work out
one single case!

Finally, we mention the following example from [vH099] which was a moti-
vation for Mark van Hoeij to start working on his algorithm.
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Example 6.3.6 Let L = p3(z)72 + pa(x)72 + p1(2)7 + po(z) with

p3(r) = —4(1402° + 7312% + 12322 + 678) (27 + 7)*(z + 3)°

pa(z) = (1456027 + 2373042° + 16378762° + 62003102 + 1388772023 +
+183803062% + 132910322 + 4046652)

pi(z) = —(x+2)(236602° + 30287925 + 15816042 + 43145772° +
+648729022 + 50994542 + 1638144)

po(z) = 182z + 3)(z + 2)(1412® + 11512? + 3114z + 2781)(z + 1)?

which has no hypergeometric solution.

Obviously, Hyper has to try all 23-3-3-2-2-23.3 = 6912 possible combinations
of factors of pp(z) and p3(z). Moreover, most of these cases involve algebraic
numbers (resp. computation in the splitting field of pops), which makes the
computation slow (taking several weeks).

Of course, HHyper has to compute in the splitting field, too, but: We have
S = {0, %,al,az,ag} as the set of finite singularities, where a; € C are the
roots of 14123 + 115122 + 31142 + 2781. As Hyper computes the following

gp(L):

G (L) = Gan (L) = gas (L) = {0}
gO(L) = {_27_1707172}
(1) = {-2-1,01}
GoolD) = {(3:0,-1),(3,0,-1),(4,0,~2)}

there are 5 -4 = 20 (without the goo(L)-information) and only 6 (with the
Joo(L)-information) cases remaining. Furthermore, we need not to compute in
a splitting field any more, because all a; are apparent singularities. All in all,
HHyper can prove that Ly = 0 has no hypergeometric solution in less than three
minutes.

Looking at all examples we come to the conclusion that for examples where
the leading and trailing coefficients have small degrees, Hyper works perfectly
well. As soon as the degrees grow (and so does the number of cases to check)
HHyper is the more efficient algorithm. The main problem however can still
occur - exponentially large algebraic extensions. In [vH099] Mark van Hoeij
shows how to avoid this for order(L) < 3 and promises to do the higher order
case later.

Besides, someone is maybe able to improve HHyper with some of the following
ideas:

e Finding a simple (fast) method/criterion for determining all apparent sin-
gularities (without computing the g,(L)). This would for example help to
find the solution of Example 6.3.6 in a few seconds.
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¢ Finding a simple (fast) method/criterion for determining all semi-apparent
singularities (without computing the g,(L)).

e Reducing the number of cases (down to order(L)) by finding smaller sub-
sets of {gp(M) | M is a first order right hand factor of L}.

6.4 Inhomogeneous Equations

In this section we will present some methods to compute hypergeometric solu-
tions y of inhomogeneous equations Ly = f. As we know from Theorem 3.1.2
it is sufficient to compute one partial solution to get (together with the solution
space V(L) of the homogeneous equation) the complete solution of the inhomo-
geneous one.

Before we start out with the algorithms we note that for polynomial and
rational f we can use the algorithms in the previous chapters 4 and 5 in order
to compute a partial solution. Therefore it is sufficient to deal with "really
hypergeometric” right hand sides (recall Lemma 2.3.5).

6.4.1 Gosper’s Algorithm
The Original Approach

We will start with the most famous inhomogeneous equation (Gosper’s equation)
Ay=foerly)—y=Ffeylx+1)—y(x)= f(z) with f e H (6.11)

Although this is the simplest possible of all inhomogeneous equations (it has
order 1 and both coefficients are 1), it already shows that there exists even first
order inhomogeneous difference equations which have no hypergeometric solu-
tion (unlike in the homogeneous case).

Let’s quickly revisit Gosper, who developed in [Gos78] the algorithm for
finding the solution of (6.11), if it exists. Down the next lines observe that
Hyper is pretty similar to Gosper’s algorithm, as both make use of the Gosper-
form (Lemma 6.1.2) and both reduce the problem of finding a hypergeometric
solution to a problem of finding a polynomial solution.

Let r(z) = ﬂfg%)ll, then we get from (6.11)

N

—
8

~
—

Ve ) = S0 o = e

It follows that ?E;g is a rational function, thus let yg;g = R(x), then

[y

y(x—l—l)—y(x):f(:c)ﬁ%—%=1<:)r(x)-R(:c+1)—R(:c)=1
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Hence, we have to find a rational function R(z) satisfying

r(z)-R(x+1)— R(z) =1 (6.12)

Because of Lemma 6.1.2 we can write r(z) = % - Cg”(:)l). Moreover we set

R(z) :== % with ged(f(z), g(x)) = 1, then we get from (6.12)

Az C(x+1).f(x+1)_f(ac):1®

()
B(z) C(z) g(z+1) g(2)
Alz) Cx+1) f(z)+g@x) gx+1)

(
B(z)  C(z) fle+1)  g(z)

=

Now Lemma 6.1.3 yields g | C, thus R(z) = g((?) with a unknown polynomial

q(z) and we get

Because ged(A(x), B(z)) = 1 (Lemma 6.1.2) it follows that B(z) | ¢(x + 1)
and therefore we can set ¢(z) := B(z — 1) - p(x) and search for the polynomial
solution p(z) satisfying

~—

A(z) -p(z +1) = B(z — 1) - p(z) = C(x) (6.13)
Let’s sum up:

Algorithm 6.4.1 (Gosper) by R. W. Gosper, Jr.

INPUT: y(z + 1) —y(x) = f with f e H

OUTPUT: The hypergeometric (partial) solution y of y(x +1) —y(x) = f (if it
exists)

BEGIN

r(x) := HE)

Compute A(z), B(z), C(z) such that r(z) = g%’;g : Cg”(:)l)
Find the polynomial solution p(x) of (6.13) (if it exists)

IF p(z) could be found THEN

R(z) := B(z—1)-p(z)

C(zx)

y(z) := R(z) - f(z)
Return y(z)

ELSE Return ()
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END

Remark 6.4.2 Remarks on Algorithm 6.4.1:

e The general solution of Gosper’s equations y(z + 1) — y(z) = f(z) is
given by the result of Algorithm 6.4.1 plus a constant (which is the general
solution of y(x + 1) —y(x) =0).

e Gosper’s algorithm is the key algorithm for the following problem: Given a
hypergeometric function (resp. sequence) f(k) find a closed form solution
for 3> f(k). If we can find the solution y(k) of the difference equation

y(k +1) —y(k) = f(k), then we simply get 3, f(k) = y(M + 1) — y(m)
where M and m are the summation bounds of the >, f(k).

The New Approach

We immediately start with equation (6.12) - there is no difference at the begin-
ning: Search for a rational function R(x) satisfying

r(z) Rz +1)—R(z) =1

where r(z) = £ (fx(:)l) is a rational function.

At this point we could use Abramov’s or van Hoeij’s algorithm in order to
look for a possible denominator of R(z) and then search for a polynomial so-
lution. We will not do that ”directly”, but it will turn out that our "new”
approach ends up with an algorithm which is very similar to Abramov’s one.

We now set R(x) = Zg;”) with coprime polynomials u and v and r(x) = %
with coprime polynomials a and b (without loss of generality we assume that v
and b are monic), thus we have:

a(z) u(@z+1) u(@)
b(z) v(x+1) ov(x)

and after multiplying up denominators

a(z) -u(x+ 1) -v(z) —b(z) -u(z) -v(x+1) =b(z) -v(x) -vix+1) (6.14)

=1

In order to solve (6.14) we try to find a suitable denominator polynomial v
(afterwards u can be computed as a polynomial solution of (6.14) - as usual).
Let’s define the polynomials

o
ged(v(zx),v(z + 1))

and divide (6.14) by ged(v(z),v(x + 1)), then

. v(z +1)
— ged(v(z),v(x + 1))

and wvy(x) :

vo(x) :

a(x)-u(z+1)-vo(x)—b(x)u(z)vi (z+1) = b(z)-vo(z)-v1 (x+1)-ged(v(z), v(z+1))



106 CHAPTER 6. HYPERGEOMETRIC SOLUTIONS

(From this equation we immediately get that vo(z) | b(x) and that v; (z) | a(x).
Using the gff-concept and Lemma 2.2.9 we get that (let v := gff(p1, ..., pm))

F(pr, P2, s P ~ .
vo = BMPLLLoPn) _ ooty i) | b (615)

gff(p2, ..., pm)
_ gff(r(p1), 7(p2), -, T(Pm))
T (D2, -, ) =7(p1) - 7(p2) - o 7(pm) | a (6.16)

Consequently,
o Straightforward conclusion
pr | ged (771 (a), TFTH(B))  VE € {1,..,m}
Thus, we could take
v =gff(p1,....,pn) withpy = ged (T_l(a),rk_l(b))

where N := dis(a,b) = max{k € N | deggcd(a,7%(b)) > 1}. If N is not
defined then we know that v = 1, just like in Abramov’s algorithm.

o Refined conclusions
pi | ged (1 (), b)

and we take py := ged (77" (a), b), then

pised (™ (o55) 7 (7))

and we take p, := ged (T’l (T(‘;l)) ST (p%)) and so on until we arrive -

as above - at a py and we may again take v = gff(p, ..., pn)-

Obviously, the ”refined conclusions” yield a polynomial which divides the poly-
nomial resulting from the ”straightforward conclusion”.

Let’s write down the complete (Gosper-)algorithm using the ”refined con-
clusions”:

Algorithm 6.4.3 (Gosper) by R. W. Gosper, Jr. resp. Peter Paule
INPUT: y(x +1) —y(x) = f with f € H

OUTPUT: The hypergeometric (partial) solution y of y(x + 1) —y(z) = f (if it
exists)

BEGIN
a(z) . flz4+1)
b(z) " f=)

Compute the largest positive integer N such that a(z) and b(z + N) have
a nontrivial common divisor.
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IF N > 0 was found THEN

FOR i:=1 TO N DO
pi(x) :=ged(a(x — 1), b(x + 4 — 1))

ole) =
b(z
bz) = p(wiill)
U(l’) = gﬂ(pla "'7pN)

ELSE v(z) :=1
Find the polynomial solution u(z) of (6.14) (if it exists)

IF u(x) could be found THEN

Return y(z)

ELSE Return 0

END

Remark 6.4.4 Remarks on Algorithm 6.4.3:

e Note the similarity to Abramov’s universal denominator algorithm (see Al-

gorithm 5.1.11). However, note also the different loops in both algorithms:
Abramov’s algorithm may return o wrong result - at least as soon as the
order of the difference equation is greater than 1 - using the loop "FOR
1:=1 TO N DO” (resp. "FOR i:=0 TO N DO”), Gosper’s algorithm would
also work correctly with the loop "FOR i:=N DOWNTO 1 DO” (but may
return denominators of higher degree).

At this point another summation problem should be outlined: Given a
rational function f(z), find a rational functionr(x) and a rational function
h(zx) which has a denominator of lowest possible degree such that

3 f@) =r(@) + 3 ha)

This problem - called indefinite rational summation - is obviously linked
to the difference equation y(x + 1) — y(z) = f(z) which is Gosper’s equa-
tion, but with a rational right hand side. The main step is to extract the
summable part - the r(z) - which is connected to Algorithm 6.4.8 (and also
to Abramov’s Algorithm 5.1.11), because the denominator of r(x) is de-
termined in a analogous way. For more details see [Pau95] and [Abr95b].
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Let’s shortly explain the connection between Algorithm 6.4.1 (original ap-
proach) and Algorithm 6.4.3 (new approach): From equations (6.15) and (6.16)
it follows that

T(p1) - 7(p2) - ... - T(pNn) - @  with a € K[z]
b = pi-7 '(p2) .. 'TﬁNH(PN) B with 8 € Klz]

Hence,
fa+1) _ a@ _a ) r(pe) o ron)
f(=z) bz) B pi-7Hp2) T N (pN)
Tp)  _T2)p2 _T(pn) Py TN (py)

o
B o per i) by pw) TV (py)
oz) TP, pn) _al@) v@+l)  Al@) Cl@+1)

B(z)  gff(pr,....pn) — B(z)  w(@) ~ Bl) Cl)

Thus, Algorithm 6.4.3 can be used to compute the Gosper-form of a ratio-
nal function (used in Algorithm 6.4.1. As it turns out that ged(a(zx),v(z)) =
ged(B(z),v(z + 1)) =1 we even get the Gosper-Petkovsek-form. Consequently,
the proof of Lemma 6.1.2 could also be reformulated using the gff-concept.

6.4.2 Generalizations of Gosper’s Algorithm

As Gosper’s algorithm deals with the simplest possible inhomogeneous equa-
tions, it is open for generalizations concerning the order, the coefficients and
even the right hand side.

Petkovsek’s generalization

In [Pet94] Marko Petkovsek deals with the following problem:

Problem 6.4.5 Find a hypergeometric solution y of the difference equation
koo Pr - TF(Y) = f with

o feH
* pi € Klz]

e po and p, are nonzero constants

Analogously to the derivation of Gosper’s algorithm, we may set R(x) = %(%
T Az C(z
(see also Lemma 2.3.5) and r(x) = % = % . %
n k-1

Zpk-rl‘"'(y)=f®2pk(x)-R(:c+k)-Hr(x+j)=1 (6.17)
k=0

k=0 =0
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Looking back to the order 1 (Gosper’s) case, we now try R(z) = %, with
f,9 € Kz] and ged(f(z),g(z)) = 1. We hope that g(z) will turn out to be a
constant!

Thus, from (6.17) we get:

flz+k) T A@+)) Cla+14j)
Zp’“ g(x +k)- C(x+k)'ZOB(a:+J)' C(z+j) =1
- fa+k) FrA@+5) _
;pk(m) g(z+ k) JI:IO Bt W
I [1j—0,zk 9( +J) 'k_l e _H?:_;: B(z+j) .
Zpk +h SR EOA( ) ET C(a)
n k—1 n—1
Zpk( flx+k)- H g(z +j) - HA(x+j)-HB(x+j)=
k=0 j=0,j#k =0 j=k
n—1 n
=C(@) - [[ B+ - 1] 9@ +4)
§=0 §=0

Obviously, g(x) divides the right hand side and all terms of the sum except the
one with £ = 0 (in which it does not appear). Thus:

x) | po(z H (x +7) ﬁB(w-}—j) (6.18)
j=1 =0

Analogously, g(x + n) has to divide the summand with ¥ = n, which yields
(after shifting by —n):

9(x) | pn(z —n) - ng+j HAaH—j (6.19)

]—7n ]—777/
Shifting « by 1 in (6.18) yields (note that po is a constant):

n+1 n
glx+1) | po(z ng-f—y H (x+7) (6.20)

Jj=1
By multiplying (6.18) and (6.20) it follows that

n n—1

9(z) | po(@)® - [[ 9@ +5)? - gle+n+1)- [[ Bl@+j)- [ B=+1)

j=2 j=0 j=1
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and by induction we get for m > 1:

n+m—1 n+m—2

g(x) | po(@)*" ™ H g(z+j) H B(z + j)°

As the characteristic of K is zero there is an m such that ged(g(n), g(n+j)) =1
for j > m, therefore:

n+m—2
m—1
9(®) | po(n)? H B(z + j)°

Analogously, from (6.19) we get

-—m

9@) [pa@=n)*"""- I  A@+i)™

j=—n—m+1

From the properties of A(z) and B(z) given by (6.4) it follows that g(x) is a
Q(‘”) (just like in the order 1 case)

constant. Thus, we can really write R(z) =
where the polynomial ¢(z) satisfies:

n k—1 n—1 n—1
Y (@) -gl@+k) - [[A@+5) - [[ Be+j)=Cl) - [] B@+7)
k=0 7=0 Jj=k 7=0

Again it follows that g(z) is divisible by B(x — 1), therefore we finally get
R(z) = W, where p(x) satisfies:

n k—1 n—2 n—2

Y pe(@)-pe+k)- [T A@+j)- I] B@+j)=C)-I] B+j) (6.21)

k=0 Jj=0 j=k—1 =0

Remark 6.4.6 Suppose that we additionally have gcd(A(x), B(x + k)) =1 for
ke{-n+1,-n+2,..,-1} - see (6.4) - than equation (6.21) simplifies to

k—1
Zpk plz +k)- H (x+7)- H Bz +j) =C(x)
Jj=0 j=—n+k

and R(z) changes to

Let’s sum up Petkovsek’s algorithm:

Algorithm 6.4.7 (General Gosper) by Marko Petkovsek
INPUT: Ly = f with

o L=3" pr-7" where p € Kz]
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e po and p,. are nonzero constants
o feH
OUTPUT: The hypergeometric (partial) solution y of Ly = f (if it exists)

BEGIN

Compute A(z), B(z), C(z) such that r(z) = gg; : cg;;)

Find a polynomial solutions p(z) of (6.21) (if it exists)
IF p(x) could be found THEN

R(z) = Zegpte)

y(z) := R(z) - f(z)
Return y(z)

ELSE Return ()

END

¢

Note that it would have been possible to stop the above derivation at equa-
tion (6.17), because this is (unlike to the derivation of Hyper) a linear difference
equation which can be solved with the methods presented in Chapter 5. Basi-
cally, this has been done in [PWZ96]. Using the symmetric product operation
we will now derive two other generalizations of Gosper’s algorithm where the
second one which will turn out to be the same as in [PWZ96]. However, we
think that our algorithm looks a little bit "nicer”:

Generalizations using the symmetric product

We have given the following problem:

Problem 6.4.8 Given o difference operator L € K(z)[r], find - if it exists -
y € H such that Ly = f where f € V(7 —r) C H meaning £ = r.

(From Lemma 2.3.5 we know that there exists § € K(z) such that Ly = y-¢
and therefore y = f - §. In other words: The hypergeometric part of the right
hand side will also appear in the (partial) solution and we have again the same
method - instead of finding a hypergeometric function, find a rational function
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of an equivalent problem. Now observe the following equalities and remember
Lemma 3.2.7:

fo= = =C-H@=(L 1)@ =
!
1 oraer 1 1 ~
- Torder(L)(%) ) (T der(t) (?) L ?) (G) =
() (10(r- 1)) @)
Consequently, 7 is a rational solution of
f

10(r - 1)i= g

Thus, we derived the following algorithm:

Algorithm 6.4.9 (HyperPartial) by Christian Weizlbaumer
INPUT: Ly = f with

o L € K(z)[r] with normal L and order(L) =n
e feH
OUTPUT: The hypergeometric (partial) solution y of Ly = f (if it exists)

BEGIN

)
7

M :=LO(r - 1)

ri=

Compute a rational solution § of My = ;ff—)

IF ¢ could be found THEN
y:=r-9g
Return y
ELSE Return
END

¢

Remark 6.4.10 The big surprise: Equation (6.17) and the equation in Algo-
rithm 6.4.9 Mg = Ff(T) are the same (G corresponds to the R(x))! Recall
Remark 3.2.8, where we derived

n n—1 n
1

1 1 k-1 4
LO(t - ;) = Zpk H Tj(T)Tk = T o0 -;pk jl;[orj(r)r’€

=0
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Multiplying both sides by %(f) = ngol TI(r) yields

n n k—1
= e - 1@ =L [[ 0
k §=0

=0

which is the difference operator corresponding to the left hand side of equation
(6.17). This equation is the one given in [PWZ96], too.

Up to now we restricted ourselves on hypergeometric right hand sides f, but
the right hand side can also be a K-linear combination of hypergeometric terms.
Using Lemma 2.2.19 this causes no problems: Suppose we have Ly = f where
f= Zf:o fi with pairwise dissimilar f; € V(7 — r;). Then we can simply use
Algorithm 6.4.9 on each f;, which yields the following algorithm:

Algorithm 6.4.11 (General HyperPartial) by Christian Weizlbaumer resp.
Marko Petkovsek
INPUT: Ly = f with

o L eK(z)[r]
o fe L(H)
OUTPUT: The hypergeometric (partial) solution y of Ly = f (if it exists)
BEGIN
Write f = Ef:o fi where f; are pairwise dissimilar hypergeometric terms
FOR i € {1,...,k} DO
o= T
M= 16(r - )
Compute a rational solution ¥; of My; = F{f_)
IF 9; could not be found THEN Return () and stop
y= Ef:o fi Ui
Return y
END

¢

Remark 6.4.12 One the one there exists examples where it is not necessary to
rearrange the right hand side f into a sum of dissimilar terms, but it suffices to
take for example simply each summand of f. However, on the other hand there
exists examples where the division into dissimilar terms is the only way to get
a solution. See e.g. Example 6.4.1).
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Without going into details we mention a further generalization of Gosper’s
algorithm described in [AbvH97]: Given the equation Ay = f and the operator
L € K(z)[r] of minimal order such that Lf = 0, one can find L € K(x)[r] of
minimal order such that A(V (L)) = V(L). Moreover, if the orders of L and L
are the same then one can also find M € K(z)[r] such that M (f) is a solution
of Ay = f,ie. A(M(f))=f.

6.4.3 Increasing the Order by 1

The following Lemma shows how to solve an inhomogeneous equation of order
n by solving an homogeneous equation of order n + 1 (see also Remark 5.2.9).

Lemma 6.4.13 Let L € K(z)[7], let f € V(r —r) and let be y an arbitrary
solution of Ly = f. Then y is also a solution of Ly = 0 where L :== (t —r) - L
and we have

V(L) = L(V(L) U{y})

Proof:

?27: L is a right hand factor of L, hence we have V(L) C V(L). Moreover,
Ly=((r—=7r)-L)yy=(r—7r)(Ly) = (r =r)(f) =0, thus y € V(L).

"C”: Lety; € V(L), arbitrary, then 0 = Ly; = (t—r)(Ly;) and hence Ly; = c- f
with ¢ € K If ¢ = 0 then this implies that y; € V(L), if ¢ # 0 then
yi € V(L) +c-y.

Although the method is simple the resulting algorithm is not very efficient.

6.4.4 Examples
Example 6.4.14 Let’s look for a partial solution of the difference equation

2 2
2z +2) — 8y(z +1) — y(z) :4( “ ) —5(;)
Because the leading and trailing coefficient are constant we can use both, Al-
gorithm 6.4.7 and Algorithm 6.4.9. We do not need Algorithm 6.4.11, because
the right hand side is hypergeometric and not a linear combination of hyperge-
ometric terms!
ACE) =50 20e+1)(@? +212430)  A(x) Clz+1)

4(20) —5(%)  (z+3)(22+192+10)  B(z) CO(x)

with A(z) =42+ 2, B(z) = x + 3 and C(x) = 22 + 19z + 10. Both Algorithms
do not have any problems and compute the partial solution y, = (ifgl = (2;)
Thus, the general solution y is given by

cy - (4 _23\/5)3 +co - (4 +23\/§)$ + <2x)

y:
x
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This example also indicates that in Algorithm 6.4.11 it is essential to divide
the right hand side into pairwise dissimilar terms: If we searched for a partial
solution for the right hand sides 4(2;:32) and —5(2;:12) individually, we would
get no solution (in both cases)!

Example 6.4.15 Let’s consider the difference equation
yz+2)—2y(z+1)+y(z) =2"+1

The right hand side is not hypergeometric, but consists of the (dissimilar) hy-
pergeometric terms 2% and 1. For 2% we get the partial solution 2%, for 1 we get
2

the partial solution %-. Thus, the general solution is given by

22

y=01+02x+2m+7

Note: In our algorithms we have to compute only one rational (resp. polyno-
mial) solution. However, if one computes the complete rational (resp. polyno-
mial) solution, it may be that the partial solution is also the general solution.

In the last example, we would get the partial solution ¢; + cox + ’”2—2 instead of

Z2

9 -

Example 6.4.16 Let’s consider the difference equation Ly = f over C with

L = (42— (2?+3z+1)7—(2+1)(z+3)
f = (2@ +2)(x+3)2?+2"@*+ 4 —i)z+3—2)+ 2 +32

Using Algorithm 6.4.11 we obtain the partial solutions x(—2)% for (—2)%(x +
2)(zx+3)? and (i —1)i® for 26 (2% + (4—i)x+3 —2i), respectively. Unfortunately,
we do not get a partial solution for 22 + 3z. Thus, the given equation has no
solution (in H).

If we change f to f + 1 we will additionally get the partial solution —% for
z? 4+ 3z + 1 and the complete partial solution y, will be given by

yp(z) = 2(=2)" + (i — 1)i* —

[N

Using Hyper or HHyper we get the general solution for Ly = f + 1

y(@) =c1(=1)* + cox! + 2(—2)* + (i — 1)i* — %
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Chapter 7

D’Alembertian Solutions

7.1 The Reduction Of Order

Up to now, we are able to compute solutions of linear difference equations which
lie in H - unfortunately, many examples appear which have no hypergeometric
solutions or ”too few” (less than the order indicates). In the latter case, how-
ever, one can have the idea to use a sort of Vieta’s Theorem: ”If you find a
hypergeometric solution, then you will also have the corresponding right hand
factor. Thus, the other solutions must be ”somewhere” in the remaining left
hand factor.” The resulting method is due to Jean Baptiste le Rond d’Alembert
and known under ”the reduction of order”.

We will need the following generalization of ”hypergeometric” (see Remark
3.1.3) and a further definition which lets future results look more pretty:

Definition 7.1.1 A function y is called d’Alembertian if there exists (monic)
first order factors T —ry,....,7 — 1, with r; € K(z) such that

(t—m) - (T—1K)(y) =0

In other words, y is d’Alembertian if it is a solution of a (monic) difference
operator (of order k) which can be factored into first order linear factors. We
will denote the set of all d’Alembertian functions by A.

Let’s sum up some important properties of A:
Proposition 7.1.2 Let L € K(z)[7]
(a) L(H) C A
(b) A is a linear space over K

(c)ye A=LyeA

117
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Proof: We will merely prove (a), as (b) and (c¢) can be found in [AbPe94].
Let )\1f1 + /\2f2 S £(H) and let (T - Tl)fl = 0, then (T - 1"1)()\1f1 + )\sz) =
A2(T—71) f2, which is in H because of Lemma, 2.3.5. Thus there exists ro € K(x)
such that (7‘—1"2)()\2 (T—'I‘l)fg) = 0 and therefore (T—TQ)(T—Tl)()\lfl-l-)\Qfg) =0

Example 7.1.3 One well known non-hypergeometric but d’Alembertian func-
tion (resp. sequence) is

the n-th harmonic number, which is (for example) annihilated by the second-
order operator (T — %) -(r—1).

Definition 7.1.4 Given the difference equation Ay = f, we will denote the set
of solutions by y =Y, f. Obviously, this set is given by

Zf ={yp +c|ceK}, wherey, is a particular solution of Ay = f

Moreover, let F be a set of functions, then >, F denotes the set of all y such
that Ay € F.

Remark 7.1.5 Remarks on Definition 7.1.4:

e This notation s the discrete analogue to the f -symbol: Given the differ-
ential equation y' = f (or in terms of the differential operator 0: dy = f)
the solution is given (resp. denoted) by y = [ f.

e Note that > f can either contain closed-form expressions computed by
Gosper’s Algorithm 6.4.1 or indefinite sums. Note also the special case
>0 equals the set of constants.

With those both, d’Alembertian functions and expressions of the form y =
> f, it is now possible to write down the general solution of an inhomogeneous
first order difference equation:

Lemma 7.1.6 Let (1—7r)h =0 with r € K(z)*, then the general solution y € A
of (t —r)y = f with f € H is given by

A
v=h 2
Proof: w:= 3 ;(fh—) solves Au = (7 — 1)u = ;(fh—) & 7(h)-7m(u) = f+7(h) - u.
Thus,

(t=r)h-u) = 7h)-7(w)=r-h-u=f+7h) u—r-h-u=
= fHG)—rh)u=f40-u=]

The fact that y € A follows for example from Lemma 6.4.13.
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Using this lemma repeatedly we obtain:

Corollary 7.1.7 Let (1 —r;)h; = 0 with r; € K(z)* fori € {1,2,...,n}, then
the general solution y € A of (T —rp)(T —rp—1)...(7 —7m1)y = f with f € H is

given by
ha hs /
=hy - . S — 7.1
D E I R D (1)
Remark 7.1.8 Remarks on Corollary 7.1.7:

e Observe that equation (7.1) is also valid for f = 0. Moreover, note that
the "beautiful” expression for y equals a linear combination of hy and
representants of the sets hy -y %, hy -y % - %, etc.

e Corollary 7.1.7 yields another characterization of d’Alembertian: We call
a function y d’Alembertian if y can be written as

yZ‘Pl'Z‘Pz'---'Z%
with hypergeometric functions @1, ..., Yk-

At the beginning of the chapter we gave the idea for d’Alembert’s reduction
of order. It is time to write down the details:

Lemma 7.1.9 Let L € K(x)[r]. Suppose we have found a factorization of the
form L = Ly - (T —r), that means we already know a hypergeometric solution
y1 € V(L) together with the corresponding right hand factor T —r.

Ifyr, € V(Ly), then
S
SRS

is a (d’Alembertian) solution of Ly = 0.

Proof: Because of Lemma 7.1.6 we know that (7 — r)y2 = yy,, therefore Ly, =
Li-(t—=7)y2=Liyr =0

Before we proceed to the algorithm for computing d’Alembertian solutions
of Ly = f, we cite an interesting theorem from [AbPe94], which is not hard to
believe looking at the last lemma:

Theorem 7.1.10 Let L € K(z)[r]. If the equation Ly = 0 has a nonzero
d’Alembertian solution, then it also has a hypergeometric solution. Respectively,
if the equation Ly = 0 has no hypergeometric solution, then it also has no
nonzero d’Alembertian solution.

Algorithm 7.1.11 (D’Alembert Reduction) by Sergei Abramov and Marko
Petkovsek

INPUT: Ly = 0 with L € K(z)[7]

OUTPUT: A basis for V(L) N A
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BEGIN

Find a hypergeometric solution hy of Ly = 0 (resp. the corresponding
first order factor R;)

If hy could not be found THEN Return () and stop
Compute L; such that L; - Ry = L (right hand division)
1:=1
WHILE a nonzero hypergeometric solution can be found DO
Find a hypergeometric solution h;y; of L;y = 0 (resp. the corre-
sponding first order factor R; 1)
Compute Li+1 such that Li+1 . Ri—‘,—l = Li
1:=1+1
Let {h1, ha, ..., hym } be the set of all found hypergeometric solutions
Y1 = hl

FOR i:=2 TO m DO compute a solution y; of R;_1R;_5...R1y = h; using
Corollary 7.1.7 and try to eliminate sums by Gosper’s algorithm.

Return {y17 Y2, - yM}
END

¢

Theorem 7.1.12 Let L € K(z)[7], then Algorithm 7.1.11 computes a basis for
V(L)NA.

Proof: Obviously, Algorithm 7.1.11 finds a factorization L = L, R, R,—1...R;
where order(R;) = 1 and the equation L,,y = 0 has no hypergeometric solution,
hence by Theorem 7.1.10 no nonzero d’Alembertian solution.

(1) We will show that V(L) NA =V(RpRm-1...R1): f y € V(R Ry—1..-R1),
then Ly = 0 and y is d’Alembertian, thus y € V(L) N A. Conversely, assume
that y € V(L) N A, then § := Ry, Ry—1...R1y € A (Proposition 7.1.2 (¢)) and
L, j = Ly =0, though we already showed that L,, does not have any nonzero
d’Alembertian solution. Thus, § =0 and y € V(R,,Rpp—1...R1).

(2) For i € {1,2,...,m} we have Ri—lRi—Q'--Rlyi = h; (Z ;ﬁ 1) and R;h; = 0,
thus Ly; = 0 & y; € V(L) N A = V(RpRm—-1...R1). It remains to prove
that the y; are linear independent: Suppose that y := > 7", A\;y; = 0, then
Ry 1Rpy—o...R1y = Aphy, = 0 and therefore A\, = 0. Analogously we can use
R;i_1R;_5..Ry (for j € {m —1,m —2...,1}) to show that \p,_1 = ... = A1 =0,
too.
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Remark 7.1.13 Let’s give a short summary of all correspondences concerning
Algorithm 7.1.11:

The factorization L = L, Ry Ryp—1...Ry with first order right hand factors
R; and L, has no hypergeometric solution.

The hypergeometric solutions hi, ha, ..., hy of Rih; =0

The elements y; of the solution base given by representants of the sets
h2 h3 hi
' Z 7(ha) Z 7(h2) Z 7(hi-1)
The general solution of Ly = f given by

Y=01-D P2 Y Pm- DG

where g denotes the general (non d’Alembertian) solution of Lyy = 0,
1 = h1 and p; == % forie {2,3,...,m}.

Yi €Q1- D2 P2 D2
hi =77 1) - T2 (p2) - oo 4, thus Ry (1571 (p1) - 707 2(p2) o - 0i) = 0

With the help of the symmetric product operation ), we can even simplify
Algorithm 7.1.11, in that sense that it is not necessary to do a (noncommutative)
right hand division (in order to find L;). Besides, it directly computes the ;
defined above:

Algorithm 7.1.14 (D’Alembert Reduction ) by Christian Weizlbaumer

resp.

Sergei Abramov and Marko Petkovsek

INPUT: Ly = 0 with L € K(z)[7]
OUTPUT: The general d’Alembertian solution y of Ly =0

BEGIN

Find a hypergeometric solution ¢; of Ly = 0 (resp. the corresponding
first order factor 7 — ;).

If 1 could not be found THEN Return () and stop

M, == LO(T — )

Ly = % (division can be performed like in the commutative case!)
1:=1

WHILE a nonzero hypergeometric solution can be found DO

Find a hypergeometric solution ¢;+1 of L;y = 0 (resp. the corre-
sponding first order factor 7 — ri41)
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M1 = L®(1 — TL)

Miq1
T—1

Liy1:=
1:=1+1

Let {¢1, @2, ..., om } be the set of all found hypergeometric solutions

Compute y := @1 - > @3 ...t Y. om - > g (where g denotes the general
non-d’Alembertian solution of L,y = 0) as the general d’Alembertian
solution. One can try to replace ) -quantifiers with Gosper’s algorithm.

END
¢

It should be mentioned that the main idea of the above algorithm (namely,
how to do one reduction step) already appeared in [vHo99].

7.1.1 Inhomogeneous Equations

It is no problem to do - at least formally - the inhomogeneous case with the
help of the following theorem:

Theorem 7.1.15 Let L € K(z)[r] with order(L)=n and let ¢ be the leading
coefficient of L. If o1 - > 2 - ...- > pn - >0 is the general solution of Ly =0,

then f
¥1 'Z‘PZ""'Z@"'ZC.W(

@1) -7 (p2) - - T(2n)
is the general solution of Ly = f, where f € H.

Proof: According to Corollary 7.1.7 (divide the given equation by ¢; the needed
factorization is given by Algorithm 7.1.11) the general solution of Ly = f is

given by L " 5
y=hi-, T(/fl) 'Zf(f;) et D ¢ 7(hn)

The statement follows after the substitution h; = 707 (1) - 7872 (2) - ... - @;.

Ignoring this formal solution given by the theorem we can again use our
methods from section 6.4 as long as the right hand side f is hypergeometric
(or our methods from chapters 4 and 5, for polynomial and rational right hand
sides f, respectively).

New ideas are needed for d’Alembertian right hand sides - without going into
details we mention the following:

o The first approach is nothing else than a generalization of Lemma 6.4.13:
Suppose we have Ly = f together with Mf = 0 (M is the minimal
annihilation operator for f), then a partial solution of Ly = f is among
the solutions of M Ly = 0. For more details see [Abr96].
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e A more effective method is presented in [AbZi96], which is based upon
the generalizations of Gosper’s algorithm - reducing the problem to the
search for rational solutions. This paper also covers the differential and
g-difference case.

7.1.2 A Slight Improvement

Up to now we computed a factorization of the form L = L, R,R, _1...-Ry
with first order right hand factors R; and L,, has no further first order right
hand factor. At this point, one could have the idea to look for first-order left
hand factors of L,, which can be computed as adjoints of right hand factors
of the adjoint operator L}, (remember Remark 3.2.3). This may yield another
d’Alembertian solutions:

Theorem 7.1.16 Let L € K(z)[r] with order(L)=n and let ¢ be the leading
coefficient of L. If o1 @2...>, ©n >, 0 is the general solution of Ly = 0, then

- S rlon) 3P (0n 1) 30T (02) 300

c-m(p1) T Hepa) - o T(Pn)

is the general solution of the adjoint equation L*y = 0.

Proof: By some substitutions, but see [AbPe94]

In practice we will use Theorem 7.1.16 in the following manner:

e Compute the adjoint equation and use Algorithm 7.1.11 to find the general

solution in the form
1 me ZSOk Z 0

where it may be that only the first j < k ¢; are known hypergeometric
solutions and the others are only formal solutions.

e By Theorem 7.1.16 the general solution of the second adjoint is given by

. > r(on) ST (02) 320

c-mF(p1) - TEF 1 (p2) - oo - T(pg)

o Using Proposition 3.2.2 we get

—k 1 k—1
! (C TR (1) - TR (2) - (o) ZT(%)'"ZT (¢2) ZO>

as the general solution of the original equation

We conclude with a short remark on factorization:
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Remark 7.1.17 With our knowledge it is now possible to factor every differ-
ence operator L € K(x)[r] with order(L) < 3. More exactly we can factor every
difference operator L € K(x)[r] in the following manner:

L=LynLy1..LiLR1R>...R,

where L contains no first order left/right hand factors. An algorithm for fac-
torization of difference (and differential) operators (which finds also nonlinear
factors) can be found in [BrPe95]. A preliminary version of this paper appeared
as [BrPe9/].

7.2 Examples

Example 7.2.1 Continuation of Example 6.3.3: Compute the second (non-
hypergeometric) solution of Ly =0, where L = 312 — a7 4+ 1 — 1

We find the following factorization - the right hand factor corresponds to the
known polynomial solution:

(x —1)(2? — 11z + 27) z? — 9z + 17
L={(3r- NT— ———=
x? — 9z + 17 2?2 — 11z + 27

Thus, the general solution y of Ly = 0 is given by

(2 _ . (@ — 2!
y= (2" - +27) Zgw(x2—9x+17)(az2—11x+27)ZO

Of course, the sum cannot be simplified with Gosper’s algorithm, because oth-
erwise Hyper and HHyper would have found already two solutions.

Example 7.2.2 Let L =712 — (x + 1)7 — (z + 1), thus we have
ylz+2)—(z+Dy(z+1)—(z+1)y(z) =0
We are looking for a general D’Alembertian solution of Ly = 0.

Again Hyper and HHyper merely find one solution, namely z!. Thus, we know
that the second solution must be in A\H. As we can compute the factorization

@+ )r—(2+1)=(+1)- (1= (z+1))

we get the general solution

_1)=
y:x!ZﬁZO
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Example 7.2.3 Let L = ps(2)7° +pa(2)7* +p3(2) 72 + p2(2)7% +p1 ()7 +po ()
with

ps(z) = z(z+1)(z+2)(z+3)

pa(z) = —z(z+1)(z+2)(z+5)(5z +19)

p3(x) = —z(@+1)(z+4)*(x+5)(2* —dx —17)
p2(z) = z(x+3)*(x+4)*(z +5)(4z® + 62 + 1)

p@) = —(x+2)*(z+3)%(z +4)°(x +5)(52% + 62 + 2)
po(x) = 2(z+1)°(x+2)*(z+3)* (¢ +4)*(z +5)

We are looking for a general D’Alembertian solution of Ly = 0.

Using Algorithm 7.1.14 we find 7 — (z + 1) as a first order right hand factor and
L = q(z)™ + ¢3(2)7® + q2(2)7% + 1 (%) 7 + go(x) given by:

wu(r) = z(z+1)(z+2)(z+3)
gs(z) = —Adzx(z+1)(z+2)(x+4)
@) = —(z—-3)z(x+1)(x+3)(z+4)
a(x) = z(z+2)(x+3)(xz+4)(3z+2)
w(z) = —2+1)*(z+2)(z+3)(r+4)
Repeating the procedure, we get the first order right hand factor 7 — 2L and

€T
Ly = 73 — 372 — 27 + 2(z + 1), which has no hypergeometric solution. L},

however, given by

Ly=2x+4)7 — (2 +2)7° =31 +1

has the first order right hand factor 7 — § and L} = (z + 4)7% + 27 — 4, which
has no first order left/right hand factors. Thus, the general solution of Ly = 0
is given by

-3 2¢ 2
y= w!ZmZT ((x+4) ~T(p1) - 72(p2) ZT(%)ZT (902)20)

where @1 > @2 Y0 is the general solution of Liy = 0.
Note that Ly = 0 has two hypergeometric solutions, 2! and (z? — z) - z!.
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